| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| Tencent MedicalNet generate_model Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent MedicalNet. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the generate_model function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27192. |
| CMSimple_XH 1.7.4 contains an authenticated remote code execution vulnerability in the content editing functionality that allows administrative users to upload malicious PHP files. Attackers with valid credentials can exploit the CSRF token mechanism to create a PHP shell file that enables arbitrary command execution on the server. |
| Tencent FaceDetection-DSFD resnet Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent FaceDetection-DSFD. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the resnet endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27197. |
| Tencent MimicMotion create_pipeline Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent MimicMotion. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the create_pipeline function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27208. |
| Mattermost versions 11.1.x <= 11.1.0, 11.0.x <= 11.0.5, 10.12.x <= 10.12.3, 10.11.x <= 10.11.7 fails to validate user channel membership when attaching Mattermost posts as comments to Jira issues, which allows an authenticated attacker with access to the Jira plugin to read post content and attachments from channels they do not have access to. |
| The Print Invoice & Delivery Notes for WooCommerce plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 5.8.0 via the 'WooCommerce_Delivery_Notes::update' function. This is due to missing capability check in the 'WooCommerce_Delivery_Notes::update' function, PHP enabled in Dompdf, and missing escape in the 'template.php' file. This makes it possible for unauthenticated attackers to execute code on the server. |
| PDFsam Enhanced App Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDFsam Enhanced. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of App objects. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27260. |
| PDFsam Enhanced XLS File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDFsam Enhanced. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of XLS files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27498. |
| PDFsam Enhanced Uncontrolled Search Path Element Local Privilege Escalation Vulnerability. This vulnerability allows phyiscally-present attackers to escalate privileges on affected installations of PDFsam Enhanced. An attacker must first obtain the ability to mount a malicious drive onto the target system in order to exploit this vulnerability.
The specific flaw exists within the configuration of OpenSSL. The product loads an OpenSSL configuration file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27867. |
| Soda PDF Desktop Uncontrolled Search Path Element Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of Soda PDF Desktop. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the configuration of OpenSSL. The product loads an OpenSSL configuration file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-25793. |
| Soda PDF Desktop PDF File Parsing Memory Corruption Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27141. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27143. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27120. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27142. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27140. |
| Soda PDF Desktop XLS File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of XLS files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27495. |
| Soda PDF Desktop Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27494. |
| pdfforge PDF Architect Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of pdfforge PDF Architect. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27501. |
| pdfforge PDF Architect XLS File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of pdfforge PDF Architect. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of XLS files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27502. |