Search Results (15839 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68293 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
CVE-2025-68305 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Prevent race in socket write iter and sock bind There is a potential race condition between sock bind and socket write iter. bind may free the same cmd via mgmt_pending before write iter sends the cmd, just as syzbot reported in UAF[1]. Here we use hci_dev_lock to synchronize the two, thereby avoiding the UAF mentioned in [1]. [1] syzbot reported: BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 Read of size 8 at addr ffff888077164818 by task syz.0.17/5989 Call Trace: mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Allocated by task 5989: mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Freed by task 5991: mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
CVE-2025-68302 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: sxgbe: fix potential NULL dereference in sxgbe_rx() Currently, when skb is null, the driver prints an error and then dereferences skb on the next line. To fix this, let's add a 'break' after the error message to switch to sxgbe_rx_refill(), which is similar to the approach taken by the other drivers in this particular case, e.g. calxeda with xgmac_rx(). Found during a code review.
CVE-2025-68287 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: Fix race condition between concurrent dwc3_remove_requests() call paths This patch addresses a race condition caused by unsynchronized execution of multiple call paths invoking `dwc3_remove_requests()`, leading to premature freeing of USB requests and subsequent crashes. Three distinct execution paths interact with `dwc3_remove_requests()`: Path 1: Triggered via `dwc3_gadget_reset_interrupt()` during USB reset handling. The call stack includes: - `dwc3_ep0_reset_state()` - `dwc3_ep0_stall_and_restart()` - `dwc3_ep0_out_start()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 2: Also initiated from `dwc3_gadget_reset_interrupt()`, but through `dwc3_stop_active_transfers()`. The call stack includes: - `dwc3_stop_active_transfers()` - `dwc3_remove_requests()` - `dwc3_gadget_del_and_unmap_request()` Path 3: Occurs independently during `adb root` execution, which triggers USB function unbind and bind operations. The sequence includes: - `gserial_disconnect()` - `usb_ep_disable()` - `dwc3_gadget_ep_disable()` - `dwc3_remove_requests()` with `-ESHUTDOWN` status Path 3 operates asynchronously and lacks synchronization with Paths 1 and 2. When Path 3 completes, it disables endpoints and frees 'out' requests. If Paths 1 or 2 are still processing these requests, accessing freed memory leads to a crash due to use-after-free conditions. To fix this added check for request completion and skip processing if already completed and added the request status for ep0 while queue.
CVE-2025-68245 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netpoll: fix incorrect refcount handling causing incorrect cleanup commit efa95b01da18 ("netpoll: fix use after free") incorrectly ignored the refcount and prematurely set dev->npinfo to NULL during netpoll cleanup, leading to improper behavior and memory leaks. Scenario causing lack of proper cleanup: 1) A netpoll is associated with a NIC (e.g., eth0) and netdev->npinfo is allocated, and refcnt = 1 - Keep in mind that npinfo is shared among all netpoll instances. In this case, there is just one. 2) Another netpoll is also associated with the same NIC and npinfo->refcnt += 1. - Now dev->npinfo->refcnt = 2; - There is just one npinfo associated to the netdev. 3) When the first netpolls goes to clean up: - The first cleanup succeeds and clears np->dev->npinfo, ignoring refcnt. - It basically calls `RCU_INIT_POINTER(np->dev->npinfo, NULL);` - Set dev->npinfo = NULL, without proper cleanup - No ->ndo_netpoll_cleanup() is either called 4) Now the second target tries to clean up - The second cleanup fails because np->dev->npinfo is already NULL. * In this case, ops->ndo_netpoll_cleanup() was never called, and the skb pool is not cleaned as well (for the second netpoll instance) - This leaks npinfo and skbpool skbs, which is clearly reported by kmemleak. Revert commit efa95b01da18 ("netpoll: fix use after free") and adds clarifying comments emphasizing that npinfo cleanup should only happen once the refcount reaches zero, ensuring stable and correct netpoll behavior.
CVE-2025-68256 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser The Information Element (IE) parser rtw_get_ie() trusted the length byte of each IE without validating that the IE body (len bytes after the 2-byte header) fits inside the remaining frame buffer. A malformed frame can advertise an IE length larger than the available data, causing the parser to increment its pointer beyond the buffer end. This results in out-of-bounds reads or, depending on the pattern, an infinite loop. Fix by validating that (offset + 2 + len) does not exceed the limit before accepting the IE or advancing to the next element. This prevents OOB reads and ensures the parser terminates safely on malformed frames.
CVE-2025-68213 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: fix possible vport_config NULL pointer deref in remove Attempting to remove the driver will cause a crash in cases where the vport failed to initialize. Following trace is from an instance where the driver failed during an attempt to create a VF: [ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated [ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms) [ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028 ... [ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf] ... [ 1723.364973] Call Trace: [ 1723.365475] <TASK> [ 1723.365972] pci_device_remove+0x42/0xb0 [ 1723.366481] device_release_driver_internal+0x1a9/0x210 [ 1723.366987] pci_stop_bus_device+0x6d/0x90 [ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20 [ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120 [ 1723.368309] sriov_disable+0x34/0xe0 [ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf] [ 1723.368982] sriov_numvfs_store+0xda/0x1c0 Avoid the NULL pointer dereference by adding NULL pointer check for vport_config[i], before freeing user_config.q_coalesce.
CVE-2025-68216 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Disable trampoline for kernel module function trace The current LoongArch BPF trampoline implementation is incompatible with tracing functions in kernel modules. This causes several severe and user-visible problems: * The `bpf_selftests/module_attach` test fails consistently. * Kernel lockup when a BPF program is attached to a module function [1]. * Critical kernel modules like WireGuard experience traffic disruption when their functions are traced with fentry [2]. Given the severity and the potential for other unknown side-effects, it is safest to disable the feature entirely for now. This patch prevents the BPF subsystem from allowing trampoline attachments to kernel module functions on LoongArch. This is a temporary mitigation until the core issues in the trampoline code for kernel module handling can be identified and fixed. [root@fedora bpf]# ./test_progs -a module_attach -v bpf_testmod.ko is already unloaded. Loading bpf_testmod.ko... Successfully loaded bpf_testmod.ko. test_module_attach:PASS:skel_open 0 nsec test_module_attach:PASS:set_attach_target 0 nsec test_module_attach:PASS:set_attach_target_explicit 0 nsec test_module_attach:PASS:skel_load 0 nsec libbpf: prog 'handle_fentry': failed to attach: -ENOTSUPP libbpf: prog 'handle_fentry': failed to auto-attach: -ENOTSUPP test_module_attach:FAIL:skel_attach skeleton attach failed: -524 Summary: 0/0 PASSED, 0 SKIPPED, 1 FAILED Successfully unloaded bpf_testmod.ko. [1]: https://lore.kernel.org/loongarch/CAK3+h2wDmpC-hP4u4pJY8T-yfKyk4yRzpu2LMO+C13FMT58oqQ@mail.gmail.com/ [2]: https://lore.kernel.org/loongarch/CAK3+h2wYcpc+OwdLDUBvg2rF9rvvyc5amfHT-KcFaK93uoELPg@mail.gmail.com/
CVE-2025-68303 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: intel: punit_ipc: fix memory corruption This passes the address of the pointer "&punit_ipcdev" when the intent was to pass the pointer itself "punit_ipcdev" (without the ampersand). This means that the: complete(&ipcdev->cmd_complete); in intel_punit_ioc() will write to a wrong memory address corrupting it.
CVE-2025-68214 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: timers: Fix NULL function pointer race in timer_shutdown_sync() There is a race condition between timer_shutdown_sync() and timer expiration that can lead to hitting a WARN_ON in expire_timers(). The issue occurs when timer_shutdown_sync() clears the timer function to NULL while the timer is still running on another CPU. The race scenario looks like this: CPU0 CPU1 <SOFTIRQ> lock_timer_base() expire_timers() base->running_timer = timer; unlock_timer_base() [call_timer_fn enter] mod_timer() ... timer_shutdown_sync() lock_timer_base() // For now, will not detach the timer but only clear its function to NULL if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() [call_timer_fn exit] lock_timer_base() base->running_timer = NULL; unlock_timer_base() ... // Now timer is pending while its function set to NULL. // next timer trigger <SOFTIRQ> expire_timers() WARN_ON_ONCE(!fn) // hit ... lock_timer_base() // Now timer will detach if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() The problem is that timer_shutdown_sync() clears the timer function regardless of whether the timer is currently running. This can leave a pending timer with a NULL function pointer, which triggers the WARN_ON_ONCE(!fn) check in expire_timers(). Fix this by only clearing the timer function when actually detaching the timer. If the timer is running, leave the function pointer intact, which is safe because the timer will be properly detached when it finishes running.
CVE-2025-68249 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: most: usb: hdm_probe: Fix calling put_device() before device initialization The early error path in hdm_probe() can jump to err_free_mdev before &mdev->dev has been initialized with device_initialize(). Calling put_device(&mdev->dev) there triggers a device core WARN and ends up invoking kref_put(&kobj->kref, kobject_release) on an uninitialized kobject. In this path the private struct was only kmalloc'ed and the intended release is effectively kfree(mdev) anyway, so free it directly instead of calling put_device() on an uninitialized device. This removes the WARNING and fixes the pre-initialization error path.
CVE-2025-68247 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: posix-timers: Plug potential memory leak in do_timer_create() When posix timer creation is set to allocate a given timer ID and the access to the user space value faults, the function terminates without freeing the already allocated posix timer structure. Move the allocation after the user space access to cure that. [ tglx: Massaged change log ]
CVE-2025-68225 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: lib/test_kho: check if KHO is enabled We must check whether KHO is enabled prior to issuing KHO commands, otherwise KHO internal data structures are not initialized.
CVE-2025-68226 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix incomplete backport in cfids_invalidation_worker() The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in smb2_close_cached_fid()") was an incomplete backport and missed one kref_put() call in cfids_invalidation_worker() that should have been converted to close_cached_dir().
CVE-2025-68234 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: io_uring/cmd_net: fix wrong argument types for skb_queue_splice() If timestamp retriving needs to be retried and the local list of SKB's already has entries, then it's spliced back into the socket queue. However, the arguments for the splice helper are transposed, causing exactly the wrong direction of splicing into the on-stack list. Fix that up.
CVE-2025-68253 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: don't spin in add_stack_record when gfp flags don't allow syzbot was able to find the following path: add_stack_record_to_list mm/page_owner.c:182 [inline] inc_stack_record_count mm/page_owner.c:214 [inline] __set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851 prep_new_page mm/page_alloc.c:1859 [inline] get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858 alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554 Don't spin in add_stack_record_to_list() when it is called from *_nolock() context.
CVE-2025-68231 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/mempool: fix poisoning order>0 pages with HIGHMEM The kernel test has reported: BUG: unable to handle page fault for address: fffba000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page *pde = 03171067 *pte = 00000000 Oops: Oops: 0002 [#1] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca Tainted: [T]=RANDSTRUCT Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17) Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56 EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8 DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287 CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690 Call Trace: poison_element (mm/mempool.c:83 mm/mempool.c:102) mempool_init_node (mm/mempool.c:142 mm/mempool.c:226) mempool_init_noprof (mm/mempool.c:250 (discriminator 1)) ? mempool_alloc_pages (mm/mempool.c:640) bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8)) ? mempool_alloc_pages (mm/mempool.c:640) do_one_initcall (init/main.c:1283) Christoph found out this is due to the poisoning code not dealing properly with CONFIG_HIGHMEM because only the first page is mapped but then the whole potentially high-order page is accessed. We could give up on HIGHMEM here, but it's straightforward to fix this with a loop that's mapping, poisoning or checking and unmapping individual pages.
CVE-2025-68251 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: avoid infinite loops due to corrupted subpage compact indexes Robert reported an infinite loop observed by two crafted images. The root cause is that `clusterofs` can be larger than `lclustersize` for !NONHEAD `lclusters` in corrupted subpage compact indexes, e.g.: blocksize = lclustersize = 512 lcn = 6 clusterofs = 515 Move the corresponding check for full compress indexes to `z_erofs_load_lcluster_from_disk()` to also cover subpage compact compress indexes. It also fixes the position of `m->type >= Z_EROFS_LCLUSTER_TYPE_MAX` check, since it should be placed right after `z_erofs_load_{compact,full}_lcluster()`.
CVE-2025-68215 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix PTP cleanup on driver removal in error path Improve the cleanup on releasing PTP resources in error path. The error case might happen either at the driver probe and PTP feature initialization or on PTP restart (errors in reset handling, NVM update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf function) and 'ps_lock' mutex deinitialization were missed. Additionally, ptp clock was not unregistered in the latter case. Keep PTP state as 'uninitialized' on init to distinguish between error scenarios and to avoid resource release duplication at driver removal. The consequence of missing ice_ptp_cleanup_pf call is the following call trace dumped when ice_adapter object is freed (port list is not empty, as it is required at this stage): [ T93022] ------------[ cut here ]------------ [ T93022] WARNING: CPU: 10 PID: 93022 at ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice] ... [ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice] ... [ T93022] Call Trace: [ T93022] <TASK> [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? __warn.cold+0xb0/0x10e [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? report_bug+0xd8/0x150 [ T93022] ? handle_bug+0xe9/0x110 [ T93022] ? exc_invalid_op+0x17/0x70 [ T93022] ? asm_exc_invalid_op+0x1a/0x20 [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] pci_device_remove+0x42/0xb0 [ T93022] device_release_driver_internal+0x19f/0x200 [ T93022] driver_detach+0x48/0x90 [ T93022] bus_remove_driver+0x70/0xf0 [ T93022] pci_unregister_driver+0x42/0xb0 [ T93022] ice_module_exit+0x10/0xdb0 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] ... [ T93022] ---[ end trace 0000000000000000 ]--- [ T93022] ice: module unloaded
CVE-2025-68313 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add RDSEED fix for Zen5 There's an issue with RDSEED's 16-bit and 32-bit register output variants on Zen5 which return a random value of 0 "at a rate inconsistent with randomness while incorrectly signaling success (CF=1)". Search the web for AMD-SB-7055 for more detail. Add a fix glue which checks microcode revisions. [ bp: Add microcode revisions checking, rewrite. ]