| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Moosend Landing Pages plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the moosend_landings_auth_get function in all versions up to, and including, 1.1.6. This makes it possible for authenticated attackers, with Subscriber-level access and above, to delete the 'moosend_landing_api_key' option value. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: lpc-snoop: Don't disable channels that aren't enabled
Mitigate e.g. the following:
# echo 1e789080.lpc-snoop > /sys/bus/platform/drivers/aspeed-lpc-snoop/unbind
...
[ 120.363594] Unable to handle kernel NULL pointer dereference at virtual address 00000004 when write
[ 120.373866] [00000004] *pgd=00000000
[ 120.377910] Internal error: Oops: 805 [#1] SMP ARM
[ 120.383306] CPU: 1 UID: 0 PID: 315 Comm: sh Not tainted 6.15.0-rc1-00009-g926217bc7d7d-dirty #20 NONE
...
[ 120.679543] Call trace:
[ 120.679559] misc_deregister from aspeed_lpc_snoop_remove+0x84/0xac
[ 120.692462] aspeed_lpc_snoop_remove from platform_remove+0x28/0x38
[ 120.700996] platform_remove from device_release_driver_internal+0x188/0x200
... |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: xt_nfacct: don't assume acct name is null-terminated
BUG: KASAN: slab-out-of-bounds in .. lib/vsprintf.c:721
Read of size 1 at addr ffff88801eac95c8 by task syz-executor183/5851
[..]
string+0x231/0x2b0 lib/vsprintf.c:721
vsnprintf+0x739/0xf00 lib/vsprintf.c:2874
[..]
nfacct_mt_checkentry+0xd2/0xe0 net/netfilter/xt_nfacct.c:41
xt_check_match+0x3d1/0xab0 net/netfilter/x_tables.c:523
nfnl_acct_find_get() handles non-null input, but the error
printk relied on its presence. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: fxls8962af: Fix use after free in fxls8962af_fifo_flush
fxls8962af_fifo_flush() uses indio_dev->active_scan_mask (with
iio_for_each_active_channel()) without making sure the indio_dev
stays in buffer mode.
There is a race if indio_dev exits buffer mode in the middle of the
interrupt that flushes the fifo. Fix this by calling
synchronize_irq() to ensure that no interrupt is currently running when
disabling buffer mode.
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
[...]
_find_first_bit_le from fxls8962af_fifo_flush+0x17c/0x290
fxls8962af_fifo_flush from fxls8962af_interrupt+0x80/0x178
fxls8962af_interrupt from irq_thread_fn+0x1c/0x7c
irq_thread_fn from irq_thread+0x110/0x1f4
irq_thread from kthread+0xe0/0xfc
kthread from ret_from_fork+0x14/0x2c |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. |
| Unverified Password Change vulnerability in Progress MOVEit Transfer on Windows (REST API modules).This issue affects MOVEit Transfer: from 2023.1.0 before 2023.1.3, from 2023.0.0 before 2023.0.8, from 2022.1.0 before 2022.1.11, from 2022.0.0 before 2022.0.10. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
| The Recras WordPress plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'recrasname' shortcode attribute in all versions up to, and including, 6.4.1. This is due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: reject TDLS operations when station is not associated
syzbot triggered a WARN in ieee80211_tdls_oper() by sending
NL80211_TDLS_ENABLE_LINK immediately after NL80211_CMD_CONNECT,
before association completed and without prior TDLS setup.
This left internal state like sdata->u.mgd.tdls_peer uninitialized,
leading to a WARN_ON() in code paths that assumed it was valid.
Reject the operation early if not in station mode or not associated. |
| The Optional Email plugin for WordPress is vulnerable to Privilege Escalation via Account Takeover in all versions up to, and including, 1.3.11. This is due to the plugin not restricting its 'random_password' filter to registration contexts, allowing the filter to affect password reset key generation. This makes it possible for unauthenticated attackers to set a known password reset key when initiating a password reset, reset the password of any user including administrators, and gain access to their accounts. |
| Transient DOS while parsing video packets received from the video firmware. |
| Information disclosure while processing a firmware event. |
| Memory corruption while processing a config call from userspace. |
| Memory corruption while handling buffer mapping operations in the cryptographic driver. |
| Memory corruption while processing shared command buffer packet between camera userspace and kernel. |
| Memory corruption while parsing clock configuration data for a specific hardware type. |
| Memory corruption while performing sensor register read operations. |
| Memory corruption while accessing a synchronization object during concurrent operations. |