| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A stack overflow vulnerability exists in the AOS-10 web-based management interface of a Mobility Gateway. Successful exploitation could allow an authenticated malicious actor to execute arbitrary code as a privileged user on the underlying operating system. |
| An insufficient authentication vulnerability in NETGEAR WiFi range
extenders allows a network adjacent attacker with WiFi authentication or
a physical Ethernet port connection to bypass the authentication
process and access the admin panel. |
| Intermediate register values of secure workloads can be exfiltrated in workloads scheduled from applications running in the non-secure environment of a platform. |
| WPForms 1.7.8 contains a cross-site scripting vulnerability in the slider import search feature and tab parameter. Attackers can inject malicious scripts through the ListTable.php endpoint to execute arbitrary JavaScript in victim's browser. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information Tampering. |
| Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of privileges. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages.
Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour.
This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory. |
| Pega Customer Service Framework versions 8.7.0 through 25.1.0 are affected by a Unrestricted file upload vulnerability, where a privileged user could potentially upload a malicious file. |
| Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request. |
| Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, AES/CBC/PKCS5Padding lacks authentication, making it vulnerable to padding oracle attacks and ciphertext manipulation. This vulnerability is fixed in 2.2. |
| A path traversal vulnerability in NETGEAR WiFi range extenders allows
an attacker with LAN authentication to access the router's IP and
review the contents of the dynamically generated webproc file, which
records the username and password submitted to the router GUI. |
| GuardDog is a CLI tool to identify malicious PyPI packages. Prior to 2.7.1, GuardDog's safe_extract() function does not validate decompressed file sizes when extracting ZIP archives (wheels, eggs), allowing attackers to cause denial of service through zip bombs. A malicious package can consume gigabytes of disk space from a few megabytes of compressed data. This vulnerability is fixed in 2.7.1. |
| An exposure of sensitive information to an unauthorized actor [CWE-200] vulnerability in Fortinet FortiFone 7.0.0 through 7.0.1, FortiFone 3.0.13 through 3.0.23 allows an unauthenticated attacker to obtain the device configuration via crafted HTTP or HTTPS requests. |
| Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure context reset on disconnect()
After the blamed commit below, if the MPC subflow is already in TCP_CLOSE
status or has fallback to TCP at mptcp_disconnect() time,
mptcp_do_fastclose() skips setting the `send_fastclose flag` and the later
__mptcp_close_ssk() does not reset anymore the related subflow context.
Any later connection will be created with both the `request_mptcp` flag
and the msk-level fallback status off (it is unconditionally cleared at
MPTCP disconnect time), leading to a warning in subflow_data_ready():
WARNING: CPU: 26 PID: 8996 at net/mptcp/subflow.c:1519 subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Modules linked in:
CPU: 26 UID: 0 PID: 8996 Comm: syz.22.39 Not tainted 6.18.0-rc7-05427-g11fc074f6c36 #1 PREEMPT(voluntary)
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
RIP: 0010:subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Code: 90 0f 0b 90 90 e9 04 fe ff ff e8 b7 1e f5 fe 89 ee bf 07 00 00 00 e8 db 19 f5 fe 83 fd 07 0f 84 35 ff ff ff e8 9d 1e f5 fe 90 <0f> 0b 90 e9 27 ff ff ff e8 8f 1e f5 fe 4c 89 e7 48 89 de e8 14 09
RSP: 0018:ffffc9002646fb30 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88813b218000 RCX: ffffffff825c8435
RDX: ffff8881300b3580 RSI: ffffffff825c8443 RDI: 0000000000000005
RBP: 000000000000000b R08: ffffffff825c8435 R09: 000000000000000b
R10: 0000000000000005 R11: 0000000000000007 R12: ffff888131ac0000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f88330af6c0(0000) GS:ffff888a93dd2000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f88330aefe8 CR3: 000000010ff59000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_data_ready (net/ipv4/tcp_input.c:5356)
tcp_data_queue (net/ipv4/tcp_input.c:5445)
tcp_rcv_state_process (net/ipv4/tcp_input.c:7165)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1955)
__release_sock (include/net/sock.h:1158 (discriminator 6) net/core/sock.c:3180 (discriminator 6))
release_sock (net/core/sock.c:3737)
mptcp_sendmsg (net/mptcp/protocol.c:1763 net/mptcp/protocol.c:1857)
inet_sendmsg (net/ipv4/af_inet.c:853 (discriminator 7))
__sys_sendto (net/socket.c:727 (discriminator 15) net/socket.c:742 (discriminator 15) net/socket.c:2244 (discriminator 15))
__x64_sys_sendto (net/socket.c:2247)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f883326702d
Address the issue setting an explicit `fastclosing` flag at fastclose
time, and checking such flag after mptcp_do_fastclose(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |