| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The dtls1_retrieve_buffered_fragment function in ssl/d1_both.c in OpenSSL before 1.0.0 Beta 2 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via an out-of-sequence DTLS handshake message, related to a "fragment bug." |
| The ASN1 library in OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, allows remote attackers to cause a denial of service via invalid encodings. |
| The do_change_cipher_spec function in OpenSSL 0.9.6c to 0.9.6k, and 0.9.7a to 0.9.7c, allows remote attackers to cause a denial of service (crash) via a crafted SSL/TLS handshake that triggers a null dereference. |
| Integer overflow in OpenSSL 0.9.6 and 0.9.7 allows remote attackers to cause a denial of service (crash) via an SSL client certificate with certain ASN.1 tag values. |
| The SSL and TLS components for OpenSSL 0.9.6i and earlier, 0.9.7, and 0.9.7a allow remote attackers to perform an unauthorized RSA private key operation via a modified Bleichenbacher attack that uses a large number of SSL or TLS connections using PKCS #1 v1.5 padding that cause OpenSSL to leak information regarding the relationship between ciphertext and the associated plaintext, aka the "Klima-Pokorny-Rosa attack." |
| The Pseudo-Random Number Generator (PRNG) in SSLeay and OpenSSL before 0.9.6b allows attackers to use the output of small PRNG requests to determine the internal state information, which could be used by attackers to predict future pseudo-random numbers. |
| The design of Advanced Encryption Standard (AES), aka Rijndael, allows remote attackers to recover AES keys via timing attacks on S-box lookups, which are difficult to perform in constant time in AES implementations. |
| The der_chop script in the openssl package in Trustix Secure Linux 1.5 through 2.1 and other operating systems allows local users to overwrite files via a symlink attack on temporary files. |
| The default configuration on OpenSSL before 0.9.8 uses MD5 for creating message digests instead of a more cryptographically strong algorithm, which makes it easier for remote attackers to forge certificates with a valid certificate authority signature. |
| Buffer overflows in OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, allow remote attackers to execute arbitrary code via (1) a large client master key in SSL2 or (2) a large session ID in SSL3. |
| The SSL/TLS handshaking code in OpenSSL 0.9.7a, 0.9.7b, and 0.9.7c, when using Kerberos ciphersuites, does not properly check the length of Kerberos tickets during a handshake, which allows remote attackers to cause a denial of service (crash) via a crafted SSL/TLS handshake that causes an out-of-bounds read. |
| OpenSSL 0.9.6 before 0.9.6d does not properly handle unknown message types, which allows remote attackers to cause a denial of service (infinite loop), as demonstrated using the Codenomicon TLS Test Tool. |
| Buffer overflow in OpenSSL 0.9.7 before 0.9.7-beta3, with Kerberos enabled, allows attackers to execute arbitrary code via a long master key. |
| The SSL/TLS server implementation in OpenSSL 0.9.7 before 0.9.7h and 0.9.8 before 0.9.8a, when using the SSL_OP_MSIE_SSLV2_RSA_PADDING option, disables a verification step that is required for preventing protocol version rollback attacks, which allows remote attackers to force a client and server to use a weaker protocol than needed via a man-in-the-middle attack. |
| OpenSSL 0.9.6k allows remote attackers to cause a denial of service (crash via large recursion) via malformed ASN.1 sequences. |
| ssl3_get_record in s3_pkt.c for OpenSSL before 0.9.7a and 0.9.6 before 0.9.6i does not perform a MAC computation if an incorrect block cipher padding is used, which causes an information leak (timing discrepancy) that may make it easier to launch cryptographic attacks that rely on distinguishing between padding and MAC verification errors, possibly leading to extraction of the original plaintext, aka the "Vaudenay timing attack." |
| OpenSSL 0.9.6e uses assertions when detecting buffer overflow attacks instead of less severe mechanisms, which allows remote attackers to cause a denial of service (crash) via certain messages that cause OpenSSL to abort from a failed assertion, as demonstrated using SSLv2 CLIENT_MASTER_KEY messages, which are not properly handled in s2_srvr.c. |
| OpenSSL before 0.9.7, 0.9.7 before 0.9.7k, and 0.9.8 before 0.9.8c, when using an RSA key with exponent 3, removes PKCS-1 padding before generating a hash, which allows remote attackers to forge a PKCS #1 v1.5 signature that is signed by that RSA key and prevents OpenSSL from correctly verifying X.509 and other certificates that use PKCS #1. |
| OpenSSL and SSLeay allow remote attackers to reuse SSL sessions and bypass access controls. |
| OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, does not properly handle ASCII representations of integers on 64 bit platforms, which could allow attackers to cause a denial of service and possibly execute arbitrary code. |