| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Fix locking for runpm vs reclaim
For cases where icc_bw_set() can be called in callbaths that could
deadlock against shrinker/reclaim, such as runpm resume, we need to
decouple the icc locking. Introduce a new icc_bw_lock for cases where
we need to serialize bw aggregation and update to decouple that from
paths that require memory allocation such as node/link creation/
destruction.
Fixes this lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.2.0-rc8-debug+ #554 Not tainted
------------------------------------------------------
ring0/132 is trying to acquire lock:
ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234
but task is already holding lock:
ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (dma_fence_map){++++}-{0:0}:
__dma_fence_might_wait+0x74/0xc0
dma_resv_lockdep+0x1f4/0x2f4
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x80/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
topology_parse_cpu_capacity+0x8c/0x178
get_cpu_for_node+0x88/0xc4
parse_cluster+0x1b0/0x28c
parse_cluster+0x8c/0x28c
init_cpu_topology+0x168/0x188
smp_prepare_cpus+0x24/0xf8
kernel_init_freeable+0x18c/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #2 (fs_reclaim){+.+.}-{0:0}:
__fs_reclaim_acquire+0x3c/0x48
fs_reclaim_acquire+0x54/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
kzalloc.constprop.0+0x14/0x20
icc_node_create_nolock+0x4c/0xc4
icc_node_create+0x38/0x58
qcom_icc_rpmh_probe+0x1b8/0x248
platform_probe+0x70/0xc4
really_probe+0x158/0x290
__driver_probe_device+0xc8/0xe0
driver_probe_device+0x44/0x100
__driver_attach+0xf8/0x108
bus_for_each_dev+0x78/0xc4
driver_attach+0x2c/0x38
bus_add_driver+0xd0/0x1d8
driver_register+0xbc/0xf8
__platform_driver_register+0x30/0x3c
qnoc_driver_init+0x24/0x30
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #1 (icc_lock){+.+.}-{3:3}:
__mutex_lock+0xcc/0x3c8
mutex_lock_nested+0x30/0x44
icc_set_bw+0x88/0x2b4
_set_opp_bw+0x8c/0xd8
_set_opp+0x19c/0x300
dev_pm_opp_set_opp+0x84/0x94
a6xx_gmu_resume+0x18c/0x804
a6xx_pm_resume+0xf8/0x234
adreno_runtime_resume+0x2c/0x38
pm_generic_runtime_resume+0x30/0x44
__rpm_callback+0x15c/0x174
rpm_callback+0x78/0x7c
rpm_resume+0x318/0x524
__pm_runtime_resume+0x78/0xbc
adreno_load_gpu+0xc4/0x17c
msm_open+0x50/0x120
drm_file_alloc+0x17c/0x228
drm_open_helper+0x74/0x118
drm_open+0xa0/0x144
drm_stub_open+0xd4/0xe4
chrdev_open+0x1b8/0x1e4
do_dentry_open+0x2f8/0x38c
vfs_open+0x34/0x40
path_openat+0x64c/0x7b4
do_filp_open+0x54/0xc4
do_sys_openat2+0x9c/0x100
do_sys_open+0x50/0x7c
__arm64_sys_openat+0x28/0x34
invoke_syscall+0x8c/0x128
el0_svc_common.constprop.0+0xa0/0x11c
do_el0_
---truncated--- |
| Tencent NeuralNLP-NeuralClassifier _load_checkpoint Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent NeuralNLP-NeuralClassifier. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the _load_checkpoint function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27184. |
| Tencent TFace restore_checkpoint Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent TFace. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the restore_checkpoint function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27185. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: prevent NULL pointer deref during reload
Calling ethtool during reload can lead to call trace, because VSI isn't
configured for some time, but netdev is alive.
To fix it add rtnl lock for VSI deconfig and config. Set ::num_q_vectors
to 0 after freeing and add a check for ::tx/rx_rings in ring related
ethtool ops.
Add proper unroll of filters in ice_start_eth().
Reproduction:
$watch -n 0.1 -d 'ethtool -g enp24s0f0np0'
$devlink dev reload pci/0000:18:00.0 action driver_reinit
Call trace before fix:
[66303.926205] BUG: kernel NULL pointer dereference, address: 0000000000000000
[66303.926259] #PF: supervisor read access in kernel mode
[66303.926286] #PF: error_code(0x0000) - not-present page
[66303.926311] PGD 0 P4D 0
[66303.926332] Oops: 0000 [#1] PREEMPT SMP PTI
[66303.926358] CPU: 4 PID: 933821 Comm: ethtool Kdump: loaded Tainted: G OE 6.4.0-rc5+ #1
[66303.926400] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018
[66303.926446] RIP: 0010:ice_get_ringparam+0x22/0x50 [ice]
[66303.926649] Code: 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 87 c0 09 00 00 c7 46 04 e0 1f 00 00 c7 46 10 e0 1f 00 00 48 8b 50 20 <48> 8b 12 0f b7 52 3a 89 56 14 48 8b 40 28 48 8b 00 0f b7 40 58 48
[66303.926722] RSP: 0018:ffffad40472f39c8 EFLAGS: 00010246
[66303.926749] RAX: ffff98a8ada05828 RBX: ffff98a8c46dd060 RCX: ffffad40472f3b48
[66303.926781] RDX: 0000000000000000 RSI: ffff98a8c46dd068 RDI: ffff98a8b23c4000
[66303.926811] RBP: ffffad40472f3b48 R08: 00000000000337b0 R09: 0000000000000000
[66303.926843] R10: 0000000000000001 R11: 0000000000000100 R12: ffff98a8b23c4000
[66303.926874] R13: ffff98a8c46dd060 R14: 000000000000000f R15: ffffad40472f3a50
[66303.926906] FS: 00007f6397966740(0000) GS:ffff98b390900000(0000) knlGS:0000000000000000
[66303.926941] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[66303.926967] CR2: 0000000000000000 CR3: 000000011ac20002 CR4: 00000000007706e0
[66303.926999] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[66303.927029] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[66303.927060] PKRU: 55555554
[66303.927075] Call Trace:
[66303.927094] <TASK>
[66303.927111] ? __die+0x23/0x70
[66303.927140] ? page_fault_oops+0x171/0x4e0
[66303.927176] ? exc_page_fault+0x7f/0x180
[66303.927209] ? asm_exc_page_fault+0x26/0x30
[66303.927244] ? ice_get_ringparam+0x22/0x50 [ice]
[66303.927433] rings_prepare_data+0x62/0x80
[66303.927469] ethnl_default_doit+0xe2/0x350
[66303.927501] genl_family_rcv_msg_doit.isra.0+0xe3/0x140
[66303.927538] genl_rcv_msg+0x1b1/0x2c0
[66303.927561] ? __pfx_ethnl_default_doit+0x10/0x10
[66303.927590] ? __pfx_genl_rcv_msg+0x10/0x10
[66303.927615] netlink_rcv_skb+0x58/0x110
[66303.927644] genl_rcv+0x28/0x40
[66303.927665] netlink_unicast+0x19e/0x290
[66303.927691] netlink_sendmsg+0x254/0x4d0
[66303.927717] sock_sendmsg+0x93/0xa0
[66303.927743] __sys_sendto+0x126/0x170
[66303.927780] __x64_sys_sendto+0x24/0x30
[66303.928593] do_syscall_64+0x5d/0x90
[66303.929370] ? __count_memcg_events+0x60/0xa0
[66303.930146] ? count_memcg_events.constprop.0+0x1a/0x30
[66303.930920] ? handle_mm_fault+0x9e/0x350
[66303.931688] ? do_user_addr_fault+0x258/0x740
[66303.932452] ? exc_page_fault+0x7f/0x180
[66303.933193] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: Delay the unmapping of the buffer
On WCN3990, we are seeing a rare scenario where copy engine hardware is
sending a copy complete interrupt to the host driver while still
processing the buffer that the driver has sent, this is leading into an
SMMU fault triggering kernel panic. This is happening on copy engine
channel 3 (CE3) where the driver normally enqueues WMI commands to the
firmware. Upon receiving a copy complete interrupt, host driver will
immediately unmap and frees the buffer presuming that hardware has
processed the buffer. In the issue case, upon receiving copy complete
interrupt, host driver will unmap and free the buffer but since hardware
is still accessing the buffer (which in this case got unmapped in
parallel), SMMU hardware will trigger an SMMU fault resulting in a
kernel panic.
In order to avoid this, as a work around, add a delay before unmapping
the copy engine source DMA buffer. This is conditionally done for
WCN3990 and only for the CE3 channel where issue is seen.
Below is the crash signature:
wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled
context fault: fsr=0x402, iova=0x7fdfd8ac0,
fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled
context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003,
cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error
received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091:
cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149
remoteproc remoteproc0: crash detected in
4080000.remoteproc: type fatal error <3> remoteproc remoteproc0:
handling crash #1 in 4080000.remoteproc
pc : __arm_lpae_unmap+0x500/0x514
lr : __arm_lpae_unmap+0x4bc/0x514
sp : ffffffc011ffb530
x29: ffffffc011ffb590 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000004
x25: 0000000000000003 x24: ffffffc011ffb890
x23: ffffffa762ef9be0 x22: ffffffa77244ef00
x21: 0000000000000009 x20: 00000007fff7c000
x19: 0000000000000003 x18: 0000000000000000
x17: 0000000000000004 x16: ffffffd7a357d9f0
x15: 0000000000000000 x14: 00fd5d4fa7ffffff
x13: 000000000000000e x12: 0000000000000000
x11: 00000000ffffffff x10: 00000000fffffe00
x9 : 000000000000017c x8 : 000000000000000c
x7 : 0000000000000000 x6 : ffffffa762ef9000
x5 : 0000000000000003 x4 : 0000000000000004
x3 : 0000000000001000 x2 : 00000007fff7c000
x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace:
__arm_lpae_unmap+0x500/0x514
__arm_lpae_unmap+0x4bc/0x514
__arm_lpae_unmap+0x4bc/0x514
arm_lpae_unmap_pages+0x78/0xa4
arm_smmu_unmap_pages+0x78/0x104
__iommu_unmap+0xc8/0x1e4
iommu_unmap_fast+0x38/0x48
__iommu_dma_unmap+0x84/0x104
iommu_dma_free+0x34/0x50
dma_free_attrs+0xa4/0xd0
ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c
[ath10k_core]
ath10k_halt+0x11c/0x180 [ath10k_core]
ath10k_stop+0x54/0x94 [ath10k_core]
drv_stop+0x48/0x1c8 [mac80211]
ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c
[mac80211]
__dev_open+0xb4/0x174
__dev_change_flags+0xc4/0x1dc
dev_change_flags+0x3c/0x7c
devinet_ioctl+0x2b4/0x580
inet_ioctl+0xb0/0x1b4
sock_do_ioctl+0x4c/0x16c
compat_ifreq_ioctl+0x1cc/0x35c
compat_sock_ioctl+0x110/0x2ac
__arm64_compat_sys_ioctl+0xf4/0x3e0
el0_svc_common+0xb4/0x17c
el0_svc_compat_handler+0x2c/0x58
el0_svc_compat+0x8/0x2c
Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe()
There are two refcount leak bugs in qcom_smsm_probe():
(1) The 'local_node' is escaped out from for_each_child_of_node() as
the break of iteration, we should call of_node_put() for it in error
path or when it is not used anymore.
(2) The 'node' is escaped out from for_each_available_child_of_node()
as the 'goto', we should call of_node_put() for it in goto target. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()
syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for
ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with
pkt_len = 0 but ath9k_hif_usb_rx_stream() uses
__dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that
pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb
with uninitialized memory and ath9k_htc_rx_msg() is reading from
uninitialized memory.
Since bytes accessed by ath9k_htc_rx_msg() is not known until
ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid
pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in
ath9k_hif_usb_rx_stream().
We have two choices. One is to workaround by adding __GFP_ZERO so that
ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let
ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose
the latter.
Note that I'm not sure threshold condition is correct, for I can't find
details on possible packet length used by this protocol. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'. |
| Tencent HunyuanVideo load_vae Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent HunyuanVideo. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the load_vae function.The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27186. |
| Tencent TFace eval Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent TFace. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the eval endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27187. |
| Tencent HunyuanDiT merge Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent HunyuanDiT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the merge endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27190. |
| Tencent Hunyuan3D-1 load_pretrained Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent Hunyuan3D-1. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the load_pretrained function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27191. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access
In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access
could occur during the memcpy() operation if the size of skb->cb is
larger than the size of struct j1939_sk_buff_cb. This is because the
memcpy() operation uses the size of skb->cb, leading to a read beyond
the struct j1939_sk_buff_cb.
Updated the memcpy() operation to use the size of struct
j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the
memcpy() operation only reads the memory within the bounds of struct
j1939_sk_buff_cb, preventing out-of-bounds memory access.
Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb
is greater than or equal to the size of struct j1939_sk_buff_cb. This
ensures that the skb->cb buffer is large enough to hold the
j1939_sk_buff_cb structure.
[mkl: rephrase commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix VAS mm use after free
The refcount on mm is dropped before the coprocessor is detached. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: wavefront: Fix integer overflow in sample size validation
The wavefront_send_sample() function has an integer overflow issue
when validating sample size. The header->size field is u32 but gets
cast to int for comparison with dev->freemem
Fix by using unsigned comparison to avoid integer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi()
The acpi_get_first_physical_node() function can return NULL, in which
case the get_device() function also returns NULL, but this value is
then dereferenced without checking,so add a check to prevent a crash.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| Tencent MedicalNet generate_model Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent MedicalNet. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the generate_model function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27192. |
| CMSimple_XH 1.7.4 contains an authenticated remote code execution vulnerability in the content editing functionality that allows administrative users to upload malicious PHP files. Attackers with valid credentials can exploit the CSRF token mechanism to create a PHP shell file that enables arbitrary command execution on the server. |