| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure
When a context DAMON sysfs directory setup is failed after setup of attrs/
directory, subdirectories of attrs/ directory are not cleaned up. As a
result, DAMON sysfs interface is nearly broken until the system reboots,
and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| A security vulnerability has been detected in Wavlink WL-NU516U1 up to 130/260. This affects the function sub_406194 of the file /cgi-bin/adm.cgi. Such manipulation of the argument firmware_url leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Intelbras VIP 3260 Z IA 2.840.00IB005.0.T. Affected by this vulnerability is an unknown functionality of the file /OutsideCmd. The manipulation results in weak password recovery. It is possible to launch the attack remotely. Attacks of this nature are highly complex. The exploitation appears to be difficult. It is recommended to upgrade the affected component. |
| A security flaw has been discovered in tushar-2223 Hotel-Management-System up to bb1f3b3666124b888f1e4bcf51b6fba9fbb01d15. This affects an unknown part of the file /home.php of the component HTTP POST Request Handler. Performing a manipulation of the argument Name/Email results in sql injection. The attack can be initiated remotely. The exploit has been released to the public and may be used for attacks. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability has been found in zhanghuanhao LibrarySystem 图书馆管理系统 up to 1.1.1. This impacts an unknown function of the file BookController.java. The manipulation leads to improper access controls. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A flaw has been found in WAYOS FBM-220G 24.10.19. This affects the function sub_40F820 of the file rc. Executing a manipulation of the argument upnp_waniface/upnp_ssdp_interval/upnp_max_age can lead to command injection. The attack can be executed remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in yued-fe LuLu UI up to 3.0.0. This issue affects the function child_process.exec of the file run.js. The manipulation results in os command injection. The attack can be launched remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in vichan-devel vichan up to 5.1.5. This vulnerability affects unknown code of the file inc/mod/pages.php of the component Password Change Handler. The manipulation of the argument Password leads to unverified password change. The attack can be initiated remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| A weakness has been identified in Total VPN 0.5.29.0 on Windows. Affected by this vulnerability is an unknown functionality of the file C:\Program Files\Total VPN\win-service.exe. Executing a manipulation can lead to unquoted search path. It is possible to launch the attack on the local host. This attack is characterized by high complexity. The exploitation appears to be difficult. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Flos Freeware Notepad2 4.2.22/4.2.23/4.2.24/4.2.25. Affected is an unknown function in the library Msimg32.dll. Performing a manipulation results in uncontrolled search path. Attacking locally is a requirement. The attack's complexity is rated as high. The exploitability is told to be difficult. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in Comfast CF-E4 2.6.0.1. This impacts an unknown function of the file /cgi-bin/mbox-config?method=SET§ion=ntp_timezone of the component HTTP POST Request Handler. Such manipulation of the argument timestr leads to command injection. The attack may be launched remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was detected in lintsinghua DeepAudit up to 3.0.3. This issue affects some unknown processing of the file backend/app/api/v1/endpoints/embedding_config.py of the component IP Address Handler. Performing a manipulation results in server-side request forgery. It is possible to initiate the attack remotely. Upgrading to version 3.0.4 and 3.1.0 is capable of addressing this issue. The patch is named da853fdd8cbe9d42053b45d83f25708ba29b8b27. It is suggested to upgrade the affected component. |
| Crypt::URandom versions from 0.41 before 0.55 for Perl is vulnerable to a heap buffer overflow in the XS function crypt_urandom_getrandom().
The function does not validate that the length parameter is non-negative. If a negative value (e.g. -1) is supplied, the expression length + 1u causes an integer wraparound, resulting in a zero-byte allocation. The subsequent call to getrandom(data, length, GRND_NONBLOCK) passes the original negative value, which is implicitly converted to a large unsigned value (typically SIZE_MAX). This can result in writes beyond the allocated buffer, leading to heap memory corruption and application crash (denial of service).
In common usage, the length argument is typically hardcoded by the caller, which reduces the likelihood of attacker-controlled exploitation. Applications that pass untrusted input to this parameter may be affected. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg file. |
| Concierge::Sessions versions from 0.8.1 before 0.8.5 for Perl generate insecure session ids. The generate_session_id function in Concierge::Sessions::Base defaults to using the uuidgen command to generate a UUID, with a fallback to using Perl's built-in rand function. Neither of these methods are secure, and attackers are able to guess session_ids that can grant them access to systems. Specifically,
* There is no warning when uuidgen fails. The software can be quietly using the fallback rand() function with no warnings if the command fails for any reason.
* The uuidgen command will generate a time-based UUID if the system does not have a high-quality random number source, because the call does not explicitly specify the --random option. Note that the system time is shared in HTTP responses.
* UUIDs are identifiers whose mere possession grants access, as per RFC 9562.
* The output of the built-in rand() function is predictable and unsuitable for security applications. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained two security-relevant
bugs:
*
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for the email subject.
*
Placeholders in subjects and plain text bodies of emails were
wrongfully evaluated twice. Therefore, if the first evaluation of a
placeholder again contains a placeholder, this second placeholder was
rendered. This allows the rendering of placeholders controlled by the
ticket buyer, and therefore the exploitation of the first issue as a
ticket buyer. Luckily, the only buyer-controlled placeholder available
in pretix by default (that is not validated in a way that prevents the
issue) is {invoice_company}, which is very unusual (but not
impossible) to be contained in an email subject template. In addition
to broadening the attack surface of the first issue, this could
theoretically also leak information about an order to one of the
attendees within that order. However, we also consider this scenario
very unlikely under typical conditions.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| The Spam protection, Anti-Spam, FireWall by CleanTalk plugin for WordPress is vulnerable to unauthorized Arbitrary Plugin Installation due to an authorization bypass via reverse DNS (PTR record) spoofing on the 'checkWithoutToken' function in all versions up to, and including, 6.71. This makes it possible for unauthenticated attackers to install and activate arbitrary plugins which can be leveraged to achieve remote code execution if another vulnerable plugin is installed and activated. Note: This is only exploitable on sites with an invalid API key. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |