| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/handshake: duplicate handshake cancellations leak socket
When a handshake request is cancelled it is removed from the
handshake_net->hn_requests list, but it is still present in the
handshake_rhashtbl until it is destroyed.
If a second cancellation request arrives for the same handshake request,
then remove_pending() will return false... and assuming
HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue
processing through the out_true label, where we put another reference on
the sock and a refcount underflow occurs.
This can happen for example if a handshake times out - particularly if
the SUNRPC client sends the AUTH_TLS probe to the server but doesn't
follow it up with the ClientHello due to a problem with tlshd. When the
timeout is hit on the server, the server will send a FIN, which triggers
a cancellation request via xs_reset_transport(). When the timeout is
hit on the client, another cancellation request happens via
xs_tls_handshake_sync().
Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel
path so duplicate cancels can be detected. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid unregistering PSP twice
PSP is unregistered twice in:
_mlx5e_remove -> mlx5e_psp_unregister
mlx5e_nic_cleanup -> mlx5e_psp_unregister
This leads to a refcount underflow in some conditions:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
[...]
mlx5e_psp_unregister+0x26/0x50 [mlx5_core]
mlx5e_nic_cleanup+0x26/0x90 [mlx5_core]
mlx5e_remove+0xe6/0x1f0 [mlx5_core]
auxiliary_bus_remove+0x18/0x30
device_release_driver_internal+0x194/0x1f0
bus_remove_device+0xc6/0x130
device_del+0x159/0x3c0
mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core]
[...]
Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup
happens as part of profile cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal
The delayed work item otg_event is initialized in fsl_otg_conf() and
scheduled under two conditions:
1. When a host controller binds to the OTG controller.
2. When the USB ID pin state changes (cable insertion/removal).
A race condition occurs when the device is removed via fsl_otg_remove():
the fsl_otg instance may be freed while the delayed work is still pending
or executing. This leads to use-after-free when the work function
fsl_otg_event() accesses the already freed memory.
The problematic scenario:
(detach thread) | (delayed work)
fsl_otg_remove() |
kfree(fsl_otg_dev) //FREE| fsl_otg_event()
| og = container_of(...) //USE
| og-> //USE
Fix this by calling disable_delayed_work_sync() in fsl_otg_remove()
before deallocating the fsl_otg structure. This ensures the delayed work
is properly canceled and completes execution prior to memory deallocation.
This bug was identified through static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix a job->pasid access race in gpu recovery
Avoid a possible UAF in GPU recovery due to a race between
the sched timeout callback and the tdr work queue.
The gpu recovery function calls drm_sched_stop() and
later drm_sched_start(). drm_sched_start() restarts
the tdr queue which will eventually free the job. If
the tdr queue frees the job before time out callback
completes, the job will be freed and we'll get a UAF
when accessing the pasid. Cache it early to avoid the
UAF.
Example KASAN trace:
[ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu]
[ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323
[ 493.074892]
[ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary)
[ 493.076493] Tainted: [E]=UNSIGNED_MODULE
[ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019
[ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched]
[ 493.076512] Call Trace:
[ 493.076515] <TASK>
[ 493.076518] dump_stack_lvl+0x64/0x80
[ 493.076529] print_report+0xce/0x630
[ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0
[ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu]
[ 493.077253] kasan_report+0xb8/0xf0
[ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu]
[ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu]
[ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu]
[ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu]
[ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu]
[ 493.080903] ? pick_task_fair+0x24e/0x330
[ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu]
[ 493.081702] ? _raw_spin_lock+0x75/0xc0
[ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10
[ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched]
[ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 493.081725] process_one_work+0x679/0xff0
[ 493.081732] worker_thread+0x6ce/0xfd0
[ 493.081736] ? __pfx_worker_thread+0x10/0x10
[ 493.081739] kthread+0x376/0x730
[ 493.081744] ? __pfx_kthread+0x10/0x10
[ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 493.081751] ? __pfx_kthread+0x10/0x10
[ 493.081755] ret_from_fork+0x247/0x330
[ 493.081761] ? __pfx_kthread+0x10/0x10
[ 493.081764] ret_from_fork_asm+0x1a/0x30
[ 493.081771] </TASK>
(cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d) |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Limit num_syncs to prevent oversized allocations
The exec and vm_bind ioctl allow userspace to specify an arbitrary
num_syncs value. Without bounds checking, a very large num_syncs
can force an excessively large allocation, leading to kernel warnings
from the page allocator as below.
Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request
exceeding this limit.
"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124
...
Call Trace:
<TASK>
alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416
___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317
__kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348
__do_kmalloc_node mm/slub.c:4364 [inline]
__kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388
kmalloc_noprof include/linux/slab.h:909 [inline]
kmalloc_array_noprof include/linux/slab.h:948 [inline]
xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158
drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797
drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894
xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:598 [inline]
__se_sys_ioctl fs/ioctl.c:584 [inline]
__x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
"
v2: Add "Reported-by" and Cc stable kernels.
v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh)
v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt)
v5: Do the check at the top of the exec func. (Matt)
(cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c) |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix buffer validation by including null terminator size in EA length
The smb2_set_ea function, which handles Extended Attributes (EA),
was performing buffer validation checks that incorrectly omitted the size
of the null terminating character (+1 byte) for EA Name.
This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where
the null terminator is expected to be present in the buffer, ensuring
the validation accurately reflects the total required buffer size. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix race between wbt_enable_default and IO submission
When wbt_enable_default() is moved out of queue freezing in elevator_change(),
it can cause the wbt inflight counter to become negative (-1), leading to hung
tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter
is in an inconsistent state.
The issue occurs because wbt_enable_default() could race with IO submission,
allowing the counter to be decremented before proper initialization. This manifests
as:
rq_wait[0]:
inflight: -1
has_waiters: True
rwb_enabled() checks the state, which can be updated exactly between wbt_wait()
(rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter
will become negative.
And results in hung task warnings like:
task:kworker/u24:39 state:D stack:0 pid:14767
Call Trace:
rq_qos_wait+0xb4/0x150
wbt_wait+0xa9/0x100
__rq_qos_throttle+0x24/0x40
blk_mq_submit_bio+0x672/0x7b0
...
Fix this by:
1. Splitting wbt_enable_default() into:
- __wbt_enable_default(): Returns true if wbt_init() should be called
- wbt_enable_default(): Wrapper for existing callers (no init)
- wbt_init_enable_default(): New function that checks and inits WBT
2. Using wbt_init_enable_default() in blk_register_queue() to ensure
proper initialization during queue registration
3. Move wbt_init() out of wbt_enable_default() which is only for enabling
disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the
original lock warning can be avoided.
4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling
code since it's no longer needed
This ensures WBT is properly initialized before any IO can be submitted,
preventing the counter from going negative. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Add sanity check for stop streaming
Add sanity check in iris_vb2_stop_streaming. If inst->state is
already IRIS_INST_ERROR, we should skip the stream_off operation
because it would still send packets to the firmware.
In iris_kill_session, inst->state is set to IRIS_INST_ERROR and
session_close is executed, which will kfree(inst_hfi_gen2->packet).
If stop_streaming is called afterward, it will cause a crash.
[bod: remove qcom from patch title] |
| In the Linux kernel, the following vulnerability has been resolved:
Input: alps - fix use-after-free bugs caused by dev3_register_work
The dev3_register_work delayed work item is initialized within
alps_reconnect() and scheduled upon receipt of the first bare
PS/2 packet from an external PS/2 device connected to the ALPS
touchpad. During device detachment, the original implementation
calls flush_workqueue() in psmouse_disconnect() to ensure
completion of dev3_register_work. However, the flush_workqueue()
in psmouse_disconnect() only blocks and waits for work items that
were already queued to the workqueue prior to its invocation. Any
work items submitted after flush_workqueue() is called are not
included in the set of tasks that the flush operation awaits.
This means that after flush_workqueue() has finished executing,
the dev3_register_work could still be scheduled. Although the
psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(),
the scheduling of dev3_register_work remains unaffected.
The race condition can occur as follows:
CPU 0 (cleanup path) | CPU 1 (delayed work)
psmouse_disconnect() |
psmouse_set_state() |
flush_workqueue() | alps_report_bare_ps2_packet()
alps_disconnect() | psmouse_queue_work()
kfree(priv); // FREE | alps_register_bare_ps2_mouse()
| priv = container_of(work...); // USE
| priv->dev3 // USE
Add disable_delayed_work_sync() in alps_disconnect() to ensure
that dev3_register_work is properly canceled and prevented from
executing after the alps_data structure has been deallocated.
This bug is identified by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix deadlock when reading partition table
When one process(such as udev) opens ublk block device (e.g., to read
the partition table via bdev_open()), a deadlock[1] can occur:
1. bdev_open() grabs disk->open_mutex
2. The process issues read I/O to ublk backend to read partition table
3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request()
runs bio->bi_end_io() callbacks
4. If this triggers fput() on file descriptor of ublk block device, the
work may be deferred to current task's task work (see fput() implementation)
5. This eventually calls blkdev_release() from the same context
6. blkdev_release() tries to grab disk->open_mutex again
7. Deadlock: same task waiting for a mutex it already holds
The fix is to run blk_update_request() and blk_mq_end_request() with bottom
halves disabled. This forces blkdev_release() to run in kernel work-queue
context instead of current task work context, and allows ublk server to make
forward progress, and avoids the deadlock.
[axboe: rewrite comment in ublk] |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the mac2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid updating compression context during writeback
Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857
Call Trace:
<TASK>
f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline]
__f2fs_write_data_pages fs/f2fs/data.c:3290 [inline]
f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317
do_writepages+0x38e/0x640 mm/page-writeback.c:2634
filemap_fdatawrite_wbc mm/filemap.c:386 [inline]
__filemap_fdatawrite_range mm/filemap.c:419 [inline]
file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794
f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294
generic_write_sync include/linux/fs.h:3043 [inline]
f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x7e9/0xe00 fs/read_write.c:686
ksys_write+0x19d/0x2d0 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The bug was triggered w/ below race condition:
fsync setattr ioctl
- f2fs_do_sync_file
- file_write_and_wait_range
- f2fs_write_cache_pages
: inode is non-compressed
: cc.cluster_size =
F2FS_I(inode)->i_cluster_size = 0
- tag_pages_for_writeback
- f2fs_setattr
- truncate_setsize
- f2fs_truncate
- f2fs_fileattr_set
- f2fs_setflags_common
- set_compress_context
: F2FS_I(inode)->i_cluster_size = 4
: set_inode_flag(inode, FI_COMPRESSED_FILE)
- f2fs_compressed_file
: return true
- f2fs_all_cluster_page_ready
: "pgidx % cc->cluster_size" trigger dividing 0 issue
Let's change as below to fix this issue:
- introduce a new atomic type variable .writeback in structure f2fs_inode_info
to track the number of threads which calling f2fs_write_cache_pages().
- use .i_sem lock to protect .writeback update.
- check .writeback before update compression context in f2fs_setflags_common()
to avoid race w/ ->writepages. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix XDP_TX path
For XDP_TX action in bnxt_rx_xdp(), clearing of the event flags is not
correct. __bnxt_poll_work() -> bnxt_rx_pkt() -> bnxt_rx_xdp() may be
looping within NAPI and some event flags may be set in earlier
iterations. In particular, if BNXT_TX_EVENT is set earlier indicating
some XDP_TX packets are ready and pending, it will be cleared if it is
XDP_TX action again. Normally, we will set BNXT_TX_EVENT again when we
successfully call __bnxt_xmit_xdp(). But if the TX ring has no more
room, the flag will not be set. This will cause the TX producer to be
ahead but the driver will not hit the TX doorbell.
For multi-buf XDP_TX, there is no need to clear the event flags and set
BNXT_AGG_EVENT. The BNXT_AGG_EVENT flag should have been set earlier in
bnxt_rx_pkt().
The visible symptom of this is that the RX ring associated with the
TX XDP ring will eventually become empty and all packets will be dropped.
Because this condition will cause the driver to not refill the RX ring
seeing that the TX ring has forever pending XDP_TX packets.
The fix is to only clear BNXT_RX_EVENT when we have successfully
called __bnxt_xmit_xdp(). |
| In the Linux kernel, the following vulnerability has been resolved:
inet: frags: flush pending skbs in fqdir_pre_exit()
We have been seeing occasional deadlocks on pernet_ops_rwsem since
September in NIPA. The stuck task was usually modprobe (often loading
a driver like ipvlan), trying to take the lock as a Writer.
lockdep does not track readers for rwsems so the read wasn't obvious
from the reports.
On closer inspection the Reader holding the lock was conntrack looping
forever in nf_conntrack_cleanup_net_list(). Based on past experience
with occasional NIPA crashes I looked thru the tests which run before
the crash and noticed that the crash follows ip_defrag.sh. An immediate
red flag. Scouring thru (de)fragmentation queues reveals skbs sitting
around, holding conntrack references.
The problem is that since conntrack depends on nf_defrag_ipv6,
nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its
netns exit hooks run _after_ conntrack's netns exit hook.
Flush all fragment queue SKBs during fqdir_pre_exit() to release
conntrack references before conntrack cleanup runs. Also flush
the queues in timer expiry handlers when they discover fqdir->dead
is set, in case packet sneaks in while we're running the pre_exit
flush.
The commit under Fixes is not exactly the culprit, but I think
previously the timer firing would eventually unblock the spinning
conntrack. |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |
| A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |