Search

Search Results (328313 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2020-36919 1 Wpforms 1 Wpforms 2026-01-14 6.1 Medium
WPForms 1.7.8 contains a cross-site scripting vulnerability in the slider import search feature and tab parameter. Attackers can inject malicious scripts through the ListTable.php endpoint to execute arbitrary JavaScript in victim's browser.
CVE-2025-37170 1 Hpe 1 Arubaos 2026-01-14 7.2 High
Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system.
CVE-2025-46684 1 Dell 1 Supportassist Os Recovery 2026-01-14 6.6 Medium
Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information Tampering.
CVE-2025-46685 1 Dell 1 Supportassist Os Recovery 2026-01-14 7.5 High
Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of privileges.
CVE-2025-58409 1 Imaginationtech 1 Graphics Ddk 2026-01-14 3.5 Low
Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages. Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour. This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory.
CVE-2025-62182 1 Pegasystems 1 Pega Infinity 2026-01-14 N/A
Pega Customer Service Framework versions 8.7.0 through 25.1.0 are affected by a Unrestricted file upload vulnerability, where a privileged user could potentially upload a malicious file.
CVE-2025-65784 1 Hubert 1 Hub 2026-01-14 6.5 Medium
Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request.
CVE-2025-68931 1 Samrocketman 1 Jervis 2026-01-14 N/A
Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, AES/CBC/PKCS5Padding lacks authentication, making it vulnerable to padding oracle attacks and ciphertext manipulation. This vulnerability is fixed in 2.2.
CVE-2026-0408 1 Netgear 4 Ex2800, Ex3110, Ex5000 and 1 more 2026-01-14 N/A
A path traversal vulnerability in NETGEAR WiFi range extenders allows an attacker with LAN authentication to access the router's IP and review the contents of the dynamically generated webproc file, which records the username and password submitted to the router GUI.
CVE-2026-22870 1 Datadoghq 1 Guarddog 2026-01-14 N/A
GuardDog is a CLI tool to identify malicious PyPI packages. Prior to 2.7.1, GuardDog's safe_extract() function does not validate decompressed file sizes when extracting ZIP archives (wheels, eggs), allowing attackers to cause denial of service through zip bombs. A malicious package can consume gigabytes of disk space from a few megabytes of compressed data. This vulnerability is fixed in 2.7.1.
CVE-2025-47855 1 Fortinet 2 Fortifone, Fortinet 2026-01-14 9.3 Critical
An exposure of sensitive information to an unauthorized actor [CWE-200] vulnerability in Fortinet FortiFone 7.0.0 through 7.0.1, FortiFone 3.0.13 through 3.0.23 allows an unauthenticated attacker to obtain the device configuration via crafted HTTP or HTTPS requests.
CVE-2026-22686 1 Agentfront 1 Enclave 2026-01-14 10 Critical
Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0.
CVE-2025-71106 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: PM: Fix reverse check in filesystems_freeze_callback() The freeze_all_ptr check in filesystems_freeze_callback() introduced by commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which quite confusingly causes all file systems to be frozen when filesystem_freeze_enabled is false. On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to trigger, most likely due to an attempt to freeze a file system that is not ready for that. Add a logical negation to the check in question to reverse it as appropriate.
CVE-2025-71144 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure context reset on disconnect() After the blamed commit below, if the MPC subflow is already in TCP_CLOSE status or has fallback to TCP at mptcp_disconnect() time, mptcp_do_fastclose() skips setting the `send_fastclose flag` and the later __mptcp_close_ssk() does not reset anymore the related subflow context. Any later connection will be created with both the `request_mptcp` flag and the msk-level fallback status off (it is unconditionally cleared at MPTCP disconnect time), leading to a warning in subflow_data_ready(): WARNING: CPU: 26 PID: 8996 at net/mptcp/subflow.c:1519 subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13)) Modules linked in: CPU: 26 UID: 0 PID: 8996 Comm: syz.22.39 Not tainted 6.18.0-rc7-05427-g11fc074f6c36 #1 PREEMPT(voluntary) Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 RIP: 0010:subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13)) Code: 90 0f 0b 90 90 e9 04 fe ff ff e8 b7 1e f5 fe 89 ee bf 07 00 00 00 e8 db 19 f5 fe 83 fd 07 0f 84 35 ff ff ff e8 9d 1e f5 fe 90 <0f> 0b 90 e9 27 ff ff ff e8 8f 1e f5 fe 4c 89 e7 48 89 de e8 14 09 RSP: 0018:ffffc9002646fb30 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff88813b218000 RCX: ffffffff825c8435 RDX: ffff8881300b3580 RSI: ffffffff825c8443 RDI: 0000000000000005 RBP: 000000000000000b R08: ffffffff825c8435 R09: 000000000000000b R10: 0000000000000005 R11: 0000000000000007 R12: ffff888131ac0000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f88330af6c0(0000) GS:ffff888a93dd2000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f88330aefe8 CR3: 000000010ff59000 CR4: 0000000000350ef0 Call Trace: <TASK> tcp_data_ready (net/ipv4/tcp_input.c:5356) tcp_data_queue (net/ipv4/tcp_input.c:5445) tcp_rcv_state_process (net/ipv4/tcp_input.c:7165) tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1955) __release_sock (include/net/sock.h:1158 (discriminator 6) net/core/sock.c:3180 (discriminator 6)) release_sock (net/core/sock.c:3737) mptcp_sendmsg (net/mptcp/protocol.c:1763 net/mptcp/protocol.c:1857) inet_sendmsg (net/ipv4/af_inet.c:853 (discriminator 7)) __sys_sendto (net/socket.c:727 (discriminator 15) net/socket.c:742 (discriminator 15) net/socket.c:2244 (discriminator 15)) __x64_sys_sendto (net/socket.c:2247) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f883326702d Address the issue setting an explicit `fastclosing` flag at fastclose time, and checking such flag after mptcp_do_fastclose().
CVE-2025-71103 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: adreno: fix deferencing ifpc_reglist when not declared On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist if still deferenced in a7xx_patch_pwrup_reglist() which causes a kernel crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 ... pc : a6xx_hw_init+0x155c/0x1e4c [msm] lr : a6xx_hw_init+0x9a8/0x1e4c [msm] ... Call trace: a6xx_hw_init+0x155c/0x1e4c [msm] (P) msm_gpu_hw_init+0x58/0x88 [msm] adreno_load_gpu+0x94/0x1fc [msm] msm_open+0xe4/0xf4 [msm] drm_file_alloc+0x1a0/0x2e4 [drm] drm_client_init+0x7c/0x104 [drm] drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib] drm_client_setup+0xb4/0xd8 [drm_client_lib] msm_drm_kms_post_init+0x2c/0x3c [msm] msm_drm_init+0x1a4/0x228 [msm] msm_drm_bind+0x30/0x3c [msm] ... Check the validity of ifpc_reglist before deferencing the table to setup the register values. Patchwork: https://patchwork.freedesktop.org/patch/688944/
CVE-2025-71107 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: ensure node page reads complete before f2fs_put_super() finishes Xfstests generic/335, generic/336 sometimes crash with the following message: F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1 ------------[ cut here ]------------ kernel BUG at fs/f2fs/super.c:1939! Oops: invalid opcode: 0000 [#1] SMP NOPTI CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none) Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:f2fs_put_super+0x3b3/0x3c0 Call Trace: <TASK> generic_shutdown_super+0x7e/0x190 kill_block_super+0x1a/0x40 kill_f2fs_super+0x9d/0x190 deactivate_locked_super+0x30/0xb0 cleanup_mnt+0xba/0x150 task_work_run+0x5c/0xa0 exit_to_user_mode_loop+0xb7/0xc0 do_syscall_64+0x1ae/0x1c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> ---[ end trace 0000000000000000 ]--- It appears that sometimes it is possible that f2fs_put_super() is called before all node page reads are completed. Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem.
CVE-2025-71110 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/slub: reset KASAN tag in defer_free() before accessing freed memory When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free() before defer_free(). On ARM64 with MTE (Memory Tagging Extension), kasan_slab_free() poisons the memory and changes the tag from the original (e.g., 0xf3) to a poison tag (0xfe). When defer_free() then tries to write to the freed object to build the deferred free list via llist_add(), the pointer still has the old tag, causing a tag mismatch and triggering a KASAN use-after-free report: BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537 Write at addr f3f000000854f020 by task kworker/u8:6/983 Pointer tag: [f3], memory tag: [fe] Fix this by calling kasan_reset_tag() before accessing the freed memory. This is safe because defer_free() is part of the allocator itself and is expected to manipulate freed memory for bookkeeping purposes.
CVE-2025-71117 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: Remove queue freezing from several sysfs store callbacks Freezing the request queue from inside sysfs store callbacks may cause a deadlock in combination with the dm-multipath driver and the queue_if_no_path option. Additionally, freezing the request queue slows down system boot on systems where sysfs attributes are set synchronously. Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue() calls from the store callbacks that do not strictly need these callbacks. Add the __data_racy annotation to request_queue.rq_timeout to suppress KCSAN data race reports about the rq_timeout reads. This patch may cause a small delay in applying the new settings. For all the attributes affected by this patch, I/O will complete correctly whether the old or the new value of the attribute is used. This patch affects the following sysfs attributes: * io_poll_delay * io_timeout * nomerges * read_ahead_kb * rq_affinity Here is an example of a deadlock triggered by running test srp/002 if this patch is not applied: task:multipathd Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 schedule_preempt_disabled+0x1c/0x30 __mutex_lock+0xb89/0x1650 mutex_lock_nested+0x1f/0x30 dm_table_set_restrictions+0x823/0xdf0 __bind+0x166/0x590 dm_swap_table+0x2a7/0x490 do_resume+0x1b1/0x610 dev_suspend+0x55/0x1a0 ctl_ioctl+0x3a5/0x7e0 dm_ctl_ioctl+0x12/0x20 __x64_sys_ioctl+0x127/0x1a0 x64_sys_call+0xe2b/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> task:(udev-worker) Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 blk_mq_freeze_queue_wait+0xf2/0x140 blk_mq_freeze_queue_nomemsave+0x23/0x30 queue_ra_store+0x14e/0x290 queue_attr_store+0x23e/0x2c0 sysfs_kf_write+0xde/0x140 kernfs_fop_write_iter+0x3b2/0x630 vfs_write+0x4fd/0x1390 ksys_write+0xfd/0x230 __x64_sys_write+0x76/0xc0 x64_sys_call+0x276/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK>
CVE-2025-71119 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/kexec: Enable SMT before waking offline CPUs If SMT is disabled or a partial SMT state is enabled, when a new kernel image is loaded for kexec, on reboot the following warning is observed: kexec: Waking offline cpu 228. WARNING: CPU: 0 PID: 9062 at arch/powerpc/kexec/core_64.c:223 kexec_prepare_cpus+0x1b0/0x1bc [snip] NIP kexec_prepare_cpus+0x1b0/0x1bc LR kexec_prepare_cpus+0x1a0/0x1bc Call Trace: kexec_prepare_cpus+0x1a0/0x1bc (unreliable) default_machine_kexec+0x160/0x19c machine_kexec+0x80/0x88 kernel_kexec+0xd0/0x118 __do_sys_reboot+0x210/0x2c4 system_call_exception+0x124/0x320 system_call_vectored_common+0x15c/0x2ec This occurs as add_cpu() fails due to cpu_bootable() returning false for CPUs that fail the cpu_smt_thread_allowed() check or non primary threads if SMT is disabled. Fix the issue by enabling SMT and resetting the number of SMT threads to the number of threads per core, before attempting to wake up all present CPUs.
CVE-2025-71122 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd/selftest: Check for overflow in IOMMU_TEST_OP_ADD_RESERVED syzkaller found it could overflow math in the test infrastructure and cause a WARN_ON by corrupting the reserved interval tree. This only effects test kernels with CONFIG_IOMMUFD_TEST. Validate the user input length in the test ioctl.