| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: fix fragment overflow handling in RX path
The atlantic driver can receive packets with more than MAX_SKB_FRAGS (17)
fragments when handling large multi-descriptor packets. This causes an
out-of-bounds write in skb_add_rx_frag_netmem() leading to kernel panic.
The issue occurs because the driver doesn't check the total number of
fragments before calling skb_add_rx_frag(). When a packet requires more
than MAX_SKB_FRAGS fragments, the fragment index exceeds the array bounds.
Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE,
then all fragments are accounted for. And reusing the existing check to
prevent the overflow earlier in the code path.
This crash occurred in production with an Aquantia AQC113 10G NIC.
Stack trace from production environment:
```
RIP: 0010:skb_add_rx_frag_netmem+0x29/0xd0
Code: 90 f3 0f 1e fa 0f 1f 44 00 00 48 89 f8 41 89
ca 48 89 d7 48 63 ce 8b 90 c0 00 00 00 48 c1 e1 04 48 01 ca 48 03 90
c8 00 00 00 <48> 89 7a 30 44 89 52 3c 44 89 42 38 40 f6 c7 01 75 74 48
89 fa 83
RSP: 0018:ffffa9bec02a8d50 EFLAGS: 00010287
RAX: ffff925b22e80a00 RBX: ffff925ad38d2700 RCX:
fffffffe0a0c8000
RDX: ffff9258ea95bac0 RSI: ffff925ae0a0c800 RDI:
0000000000037a40
RBP: 0000000000000024 R08: 0000000000000000 R09:
0000000000000021
R10: 0000000000000848 R11: 0000000000000000 R12:
ffffa9bec02a8e24
R13: ffff925ad8615570 R14: 0000000000000000 R15:
ffff925b22e80a00
FS: 0000000000000000(0000)
GS:ffff925e47880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff9258ea95baf0 CR3: 0000000166022004 CR4:
0000000000f72ef0
PKRU: 55555554
Call Trace:
<IRQ>
aq_ring_rx_clean+0x175/0xe60 [atlantic]
? aq_ring_rx_clean+0x14d/0xe60 [atlantic]
? aq_ring_tx_clean+0xdf/0x190 [atlantic]
? kmem_cache_free+0x348/0x450
? aq_vec_poll+0x81/0x1d0 [atlantic]
? __napi_poll+0x28/0x1c0
? net_rx_action+0x337/0x420
```
Changes in v4:
- Add Fixes: tag to satisfy patch validation requirements.
Changes in v3:
- Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE,
then all fragments are accounted for. |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: always add GFP_NOWARN for ATOMIC allocations
Driver authors often forget to add GFP_NOWARN for page allocation
from the datapath. This is annoying to users as OOMs are a fact
of life, and we pretty much expect network Rx to hit page allocation
failures during OOM. Make page pool add GFP_NOWARN for ATOMIC allocations
by default. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: pegasus-notetaker - fix potential out-of-bounds access
In the pegasus_notetaker driver, the pegasus_probe() function allocates
the URB transfer buffer using the wMaxPacketSize value from
the endpoint descriptor. An attacker can use a malicious USB descriptor
to force the allocation of a very small buffer.
Subsequently, if the device sends an interrupt packet with a specific
pattern (e.g., where the first byte is 0x80 or 0x42),
the pegasus_parse_packet() function parses the packet without checking
the allocated buffer size. This leads to an out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix lockdep WARN due to partition scan work
Blktests test cases nvme/014, 057 and 058 fail occasionally due to a
lockdep WARN. As reported in the Closes tag URL, the WARN indicates that
a deadlock can happen due to the dependency among disk->open_mutex,
kblockd workqueue completion and partition_scan_work completion.
To avoid the lockdep WARN and the potential deadlock, cut the dependency
by running the partition_scan_work not by kblockd workqueue but by
nvme_wq. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: Add missing kfree() of nvkm_falcon_fw::boot
nvkm_falcon_fw::boot is allocated, but no one frees it. This causes a
kmemleak warning.
Make sure this data is deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Avoid lock inversion when pinning to GGTT on CHV/BXT+VTD
On completion of i915_vma_pin_ww(), a synchronous variant of
dma_fence_work_commit() is called. When pinning a VMA to GGTT address
space on a Cherry View family processor, or on a Broxton generation SoC
with VTD enabled, i.e., when stop_machine() is then called from
intel_ggtt_bind_vma(), that can potentially lead to lock inversion among
reservation_ww and cpu_hotplug locks.
[86.861179] ======================================================
[86.861193] WARNING: possible circular locking dependency detected
[86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U
[86.861226] ------------------------------------------------------
[86.861238] i915_module_loa/1432 is trying to acquire lock:
[86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50
[86.861290]
but task is already holding lock:
[86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.862233]
which lock already depends on the new lock.
[86.862251]
the existing dependency chain (in reverse order) is:
[86.862265]
-> #5 (reservation_ww_class_mutex){+.+.}-{3:3}:
[86.862292] dma_resv_lockdep+0x19a/0x390
[86.862315] do_one_initcall+0x60/0x3f0
[86.862334] kernel_init_freeable+0x3cd/0x680
[86.862353] kernel_init+0x1b/0x200
[86.862369] ret_from_fork+0x47/0x70
[86.862383] ret_from_fork_asm+0x1a/0x30
[86.862399]
-> #4 (reservation_ww_class_acquire){+.+.}-{0:0}:
[86.862425] dma_resv_lockdep+0x178/0x390
[86.862440] do_one_initcall+0x60/0x3f0
[86.862454] kernel_init_freeable+0x3cd/0x680
[86.862470] kernel_init+0x1b/0x200
[86.862482] ret_from_fork+0x47/0x70
[86.862495] ret_from_fork_asm+0x1a/0x30
[86.862509]
-> #3 (&mm->mmap_lock){++++}-{3:3}:
[86.862531] down_read_killable+0x46/0x1e0
[86.862546] lock_mm_and_find_vma+0xa2/0x280
[86.862561] do_user_addr_fault+0x266/0x8e0
[86.862578] exc_page_fault+0x8a/0x2f0
[86.862593] asm_exc_page_fault+0x27/0x30
[86.862607] filldir64+0xeb/0x180
[86.862620] kernfs_fop_readdir+0x118/0x480
[86.862635] iterate_dir+0xcf/0x2b0
[86.862648] __x64_sys_getdents64+0x84/0x140
[86.862661] x64_sys_call+0x1058/0x2660
[86.862675] do_syscall_64+0x91/0xe90
[86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.862703]
-> #2 (&root->kernfs_rwsem){++++}-{3:3}:
[86.862725] down_write+0x3e/0xf0
[86.862738] kernfs_add_one+0x30/0x3c0
[86.862751] kernfs_create_dir_ns+0x53/0xb0
[86.862765] internal_create_group+0x134/0x4c0
[86.862779] sysfs_create_group+0x13/0x20
[86.862792] topology_add_dev+0x1d/0x30
[86.862806] cpuhp_invoke_callback+0x4b5/0x850
[86.862822] cpuhp_issue_call+0xbf/0x1f0
[86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320
[86.862852] __cpuhp_setup_state+0xb0/0x220
[86.862866] topology_sysfs_init+0x30/0x50
[86.862879] do_one_initcall+0x60/0x3f0
[86.862893] kernel_init_freeable+0x3cd/0x680
[86.862908] kernel_init+0x1b/0x200
[86.862921] ret_from_fork+0x47/0x70
[86.862934] ret_from_fork_asm+0x1a/0x30
[86.862947]
-> #1 (cpuhp_state_mutex){+.+.}-{3:3}:
[86.862969] __mutex_lock+0xaa/0xed0
[86.862982] mutex_lock_nested+0x1b/0x30
[86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320
[86.863012] __cpuhp_setup_state+0xb0/0x220
[86.863026] page_alloc_init_cpuhp+0x2d/0x60
[86.863041] mm_core_init+0x22/0x2d0
[86.863054] start_kernel+0x576/0xbd0
[86.863068] x86_64_start_reservations+0x18/0x30
[86.863084] x86_64_start_kernel+0xbf/0x110
[86.863098] common_startup_64+0x13e/0x141
[86.863114]
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
[86.863135] __lock_acquire+0x16
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: close accepted socket when per-IP limit rejects connection
When the per-IP connection limit is exceeded in ksmbd_kthread_fn(),
the code sets ret = -EAGAIN and continues the accept loop without
closing the just-accepted socket. That leaks one socket per rejected
attempt from a single IP and enables a trivial remote DoS.
Release client_sk before continuing.
This bug was found with ZeroPath. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing
The Supported Rates IE length from an incoming Association Request frame
was used directly as the memcpy() length when copying into a fixed-size
16-byte stack buffer (supportRate). A malicious station can advertise an
IE length larger than 16 bytes, causing a stack buffer overflow.
Clamp ie_len to the buffer size before copying the Supported Rates IE,
and correct the bounds check when merging Extended Supported Rates to
prevent a second potential overflow.
This prevents kernel stack corruption triggered by malformed association
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: fix race condition on death_list
Rust Binder contains the following unsafe operation:
// SAFETY: A `NodeDeath` is never inserted into the death list
// of any node other than its owner, so it is either in this
// death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
This operation is unsafe because when touching the prev/next pointers of
a list element, we have to ensure that no other thread is also touching
them in parallel. If the node is present in the list that `remove` is
called on, then that is fine because we have exclusive access to that
list. If the node is not in any list, then it's also ok. But if it's
present in a different list that may be accessed in parallel, then that
may be a data race on the prev/next pointers.
And unfortunately that is exactly what is happening here. In
Node::release, we:
1. Take the lock.
2. Move all items to a local list on the stack.
3. Drop the lock.
4. Iterate the local list on the stack.
Combined with threads using the unsafe remove method on the original
list, this leads to memory corruption of the prev/next pointers. This
leads to crashes like this one:
Unable to handle kernel paging request at virtual address 000bb9841bcac70e
Mem abort info:
ESR = 0x0000000096000044
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[000bb9841bcac70e] address between user and kernel address ranges
Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP
google-cdd 538c004.gcdd: context saved(CPU:1)
item - log_kevents is disabled
Modules linked in: ... rust_binder
CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: MUSTANG PVT 1.0 based on LGA (DT)
Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder]
pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder]
lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder]
sp : ffffffc09b433ac0
x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448
x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578
x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40
x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00
x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0
x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0
x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000
x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00
Call trace:
_RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc]
process_scheduled_works+0x1c4/0x45c
worker_thread+0x32c/0x3e8
kthread+0x11c/0x1c8
ret_from_fork+0x10/0x20
Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509)
---[ end trace 0000000000000000 ]---
Thus, modify Node::release to pop items directly off the original list. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list
"struct sdca_control" declares "values" field as integer array.
But the memory allocated to it is of char array. This causes
crash for sdca_parse_function API. This patch addresses the
issue by allocating correct data size. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash in process_v2_sparse_read() for encrypted directories
The crash in process_v2_sparse_read() for fscrypt-encrypted directories
has been reported. Issue takes place for Ceph msgr2 protocol in secure
mode. It can be reproduced by the steps:
sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure
(1) mkdir /mnt/cephfs/fscrypt-test-3
(2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3
(3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3
(4) fscrypt lock /mnt/cephfs/fscrypt-test-3
(5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3
(6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar
(7) Issue has been triggered
[ 408.072247] ------------[ cut here ]------------
[ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865
ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common
intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery
pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass
polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse
serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg
pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore
[ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+
[ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.17.0-5.fc42 04/01/2014
[ 408.072310] Workqueue: ceph-msgr ceph_con_workfn
[ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8
8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06
fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85
[ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246
[ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38
[ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8
[ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8
[ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000
[ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000)
knlGS:0000000000000000
[ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0
[ 408.072336] PKRU: 55555554
[ 408.072337] Call Trace:
[ 408.072338] <TASK>
[ 408.072340] ? sched_clock_noinstr+0x9/0x10
[ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10
[ 408.072347] ? _raw_spin_unlock+0xe/0x40
[ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830
[ 408.072353] ? __kasan_check_write+0x14/0x30
[ 408.072357] ? mutex_lock+0x84/0xe0
[ 408.072359] ? __pfx_mutex_lock+0x10/0x10
[ 408.072361] ceph_con_workfn+0x27e/0x10e0
[ 408.072364] ? metric_delayed_work+0x311/0x2c50
[ 408.072367] process_one_work+0x611/0xe20
[ 408.072371] ? __kasan_check_write+0x14/0x30
[ 408.072373] worker_thread+0x7e3/0x1580
[ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 408.072378] ? __pfx_worker_thread+0x10/0x10
[ 408.072381] kthread+0x381/0x7a0
[ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 408.072385] ? __pfx_kthread+0x10/0x10
[ 408.072387] ? __kasan_check_write+0x14/0x30
[ 408.072389] ? recalc_sigpending+0x160/0x220
[ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50
[ 408.072394] ? calculate_sigpending+0x78/0xb0
[ 408.072395] ? __pfx_kthread+0x10/0x10
[ 408.072397] ret_from_fork+0x2b6/0x380
[ 408.072400] ? __pfx_kthread+0x10/0x10
[ 408.072402] ret_from_fork_asm+0x1a/0x30
[ 408.072406] </TASK>
[ 408.072407] ---[ end trace 0000000000000000 ]---
[ 408.072418] Oops: general protection fault, probably for non-canonical
address 0xdffffc00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/AER: Fix NULL pointer access by aer_info
The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx
will result in kernel panic. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump
Do not block PCI config accesses through pci_cfg_access_lock() when
executing the s390 variant of PCI error recovery: Acquire just
device_lock() instead of pci_dev_lock() as powerpc's EEH and
generig PCI AER processing do.
During error recovery testing a pair of tasks was reported to be hung:
mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working
INFO: task kmcheck:72 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<000000065256f572>] schedule_preempt_disabled+0x22/0x30
[<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8
[<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core]
[<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core]
[<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398
[<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0
INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000
Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core]
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<0000000652172e28>] pci_wait_cfg+0x80/0xe8
[<0000000652172f94>] pci_cfg_access_lock+0x74/0x88
[<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core]
[<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core]
[<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core]
[<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168
[<0000000652513212>] devlink_health_report+0x19a/0x230
[<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core]
No kernel log of the exact same error with an upstream kernel is
available - but the very same deadlock situation can be constructed there,
too:
- task: kmcheck
mlx5_unload_one() tries to acquire devlink lock while the PCI error
recovery code has set pdev->block_cfg_access by way of
pci_cfg_access_lock()
- task: kworker
mlx5_crdump_collect() tries to set block_cfg_access through
pci_cfg_access_lock() while devlink_health_report() had acquired
the devlink lock.
A similar deadlock situation can be reproduced by requesting a
crdump with
> devlink health dump show pci/<BDF> reporter fw_fatal
while PCI error recovery is executed on the same <BDF> physical function
by mlx5_core's pci_error_handlers. On s390 this can be injected with
> zpcictl --reset-fw <BDF>
Tests with this patch failed to reproduce that second deadlock situation,
the devlink command is rejected with "kernel answers: Permission denied" -
and we get a kernel log message of:
mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5
because the config read of VSC_SEMAPHORE is rejected by the underlying
hardware.
Two prior attempts to address this issue have been discussed and
ultimately rejected [see link], with the primary argument that s390's
implementation of PCI error recovery is imposing restrictions that
neither powerpc's EEH nor PCI AER handling need. Tests show that PCI
error recovery on s390 is running to completion even without blocking
access to PCI config space. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose().
syzbot reported divide-by-zero in __tcp_select_window() by
MPTCP socket. [0]
We had a similar issue for the bare TCP and fixed in commit
499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead
of 0").
Let's apply the same fix to mptcp_do_fastclose().
[0]:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336
Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00
RSP: 0018:ffffc90003017640 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028
R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0
Call Trace:
<TASK>
tcp_select_window net/ipv4/tcp_output.c:281 [inline]
__tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568
tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline]
tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836
mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793
mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253
mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776
mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0xe5/0x270 net/socket.c:742
__sys_sendto+0x3bd/0x520 net/socket.c:2244
__do_sys_sendto net/socket.c:2251 [inline]
__se_sys_sendto net/socket.c:2247 [inline]
__x64_sys_sendto+0xde/0x100 net/socket.c:2247
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f66e998f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: ip22zilog: Use platform device for probing
After commit 84a9582fd203 ("serial: core: Start managing serial controllers
to enable runtime PM") serial drivers need to provide a device in
struct uart_port.dev otherwise an oops happens. To fix this issue
for ip22zilog driver switch driver to a platform driver and setup
the serial device in sgi-ip22 code. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to detect potential corrupted nid in free_nid_list
As reported, on-disk footer.ino and footer.nid is the same and
out-of-range, let's add sanity check on f2fs_alloc_nid() to detect
any potential corruption in free_nid_list. |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized 'offp' in statmount_string()
In statmount_string(), most flags assign an output offset pointer (offp)
which is later updated with the string offset. However, the
STATMOUNT_MNT_UIDMAP and STATMOUNT_MNT_GIDMAP cases directly set the
struct fields instead of using offp. This leaves offp uninitialized,
leading to a possible uninitialized dereference when *offp is updated.
Fix it by assigning offp for UIDMAP and GIDMAP as well, keeping the code
path consistent. |
| In the Linux kernel, the following vulnerability has been resolved:
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running. |