| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: ensure that VID header offset + VID header size <= alloc, size
Ensure that the VID header offset + VID header size does not exceed
the allocated area to avoid slab OOB.
BUG: KASAN: slab-out-of-bounds in crc32_body lib/crc32.c:111 [inline]
BUG: KASAN: slab-out-of-bounds in crc32_le_generic lib/crc32.c:179 [inline]
BUG: KASAN: slab-out-of-bounds in crc32_le_base+0x58c/0x626 lib/crc32.c:197
Read of size 4 at addr ffff88802bb36f00 by task syz-executor136/1555
CPU: 2 PID: 1555 Comm: syz-executor136 Tainted: G W
6.0.0-1868 #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x85/0xad lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold.13+0xb6/0x6bb mm/kasan/report.c:433
kasan_report+0xa7/0x11b mm/kasan/report.c:495
crc32_body lib/crc32.c:111 [inline]
crc32_le_generic lib/crc32.c:179 [inline]
crc32_le_base+0x58c/0x626 lib/crc32.c:197
ubi_io_write_vid_hdr+0x1b7/0x472 drivers/mtd/ubi/io.c:1067
create_vtbl+0x4d5/0x9c4 drivers/mtd/ubi/vtbl.c:317
create_empty_lvol drivers/mtd/ubi/vtbl.c:500 [inline]
ubi_read_volume_table+0x67b/0x288a drivers/mtd/ubi/vtbl.c:812
ubi_attach+0xf34/0x1603 drivers/mtd/ubi/attach.c:1601
ubi_attach_mtd_dev+0x6f3/0x185e drivers/mtd/ubi/build.c:965
ctrl_cdev_ioctl+0x2db/0x347 drivers/mtd/ubi/cdev.c:1043
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x213 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3e/0x86 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0x0
RIP: 0033:0x7f96d5cf753d
Code:
RSP: 002b:00007fffd72206f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f96d5cf753d
RDX: 0000000020000080 RSI: 0000000040186f40 RDI: 0000000000000003
RBP: 0000000000400cd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000400be0
R13: 00007fffd72207e0 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 1555:
kasan_save_stack+0x20/0x3d mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
____kasan_kmalloc mm/kasan/common.c:516 [inline]
__kasan_kmalloc+0x88/0xa3 mm/kasan/common.c:525
kasan_kmalloc include/linux/kasan.h:234 [inline]
__kmalloc+0x138/0x257 mm/slub.c:4429
kmalloc include/linux/slab.h:605 [inline]
ubi_alloc_vid_buf drivers/mtd/ubi/ubi.h:1093 [inline]
create_vtbl+0xcc/0x9c4 drivers/mtd/ubi/vtbl.c:295
create_empty_lvol drivers/mtd/ubi/vtbl.c:500 [inline]
ubi_read_volume_table+0x67b/0x288a drivers/mtd/ubi/vtbl.c:812
ubi_attach+0xf34/0x1603 drivers/mtd/ubi/attach.c:1601
ubi_attach_mtd_dev+0x6f3/0x185e drivers/mtd/ubi/build.c:965
ctrl_cdev_ioctl+0x2db/0x347 drivers/mtd/ubi/cdev.c:1043
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x213 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3e/0x86 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0x0
The buggy address belongs to the object at ffff88802bb36e00
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 0 bytes to the right of
256-byte region [ffff88802bb36e00, ffff88802bb36f00)
The buggy address belongs to the physical page:
page:00000000ea4d1263 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2bb36
head:00000000ea4d1263 order:1 compound_mapcount:0 compound_pincount:0
flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0010200 ffffea000066c300 dead000000000003 ffff888100042b40
raw: 0000000000000000 00000000001
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imxrt1050: fix memory leak in imxrt1050_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically
handle the unused ioremap region. If any error occurs, regions allocated by
kzalloc() will leak, but using devm_kzalloc() instead will automatically
free the memory using devm_kfree().
Also, fix error handling of hws by adding unregister_hws label, which
unregisters remaining hws when iomap failed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/disp: fix use-after-free in error handling of nouveau_connector_create
We can't simply free the connector after calling drm_connector_init on it.
We need to clean up the drm side first.
It might not fix all regressions from commit 2b5d1c29f6c4
("drm/nouveau/disp: PIOR DP uses GPIO for HPD, not PMGR AUX interrupts"),
but at least it fixes a memory corruption in error handling related to
that commit. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix scheduling while atomic in decompression path
[ 16.945668][ C0] Call trace:
[ 16.945678][ C0] dump_backtrace+0x110/0x204
[ 16.945706][ C0] dump_stack_lvl+0x84/0xbc
[ 16.945735][ C0] __schedule_bug+0xb8/0x1ac
[ 16.945756][ C0] __schedule+0x724/0xbdc
[ 16.945778][ C0] schedule+0x154/0x258
[ 16.945793][ C0] bit_wait_io+0x48/0xa4
[ 16.945808][ C0] out_of_line_wait_on_bit+0x114/0x198
[ 16.945824][ C0] __sync_dirty_buffer+0x1f8/0x2e8
[ 16.945853][ C0] __f2fs_commit_super+0x140/0x1f4
[ 16.945881][ C0] f2fs_commit_super+0x110/0x28c
[ 16.945898][ C0] f2fs_handle_error+0x1f4/0x2f4
[ 16.945917][ C0] f2fs_decompress_cluster+0xc4/0x450
[ 16.945942][ C0] f2fs_end_read_compressed_page+0xc0/0xfc
[ 16.945959][ C0] f2fs_handle_step_decompress+0x118/0x1cc
[ 16.945978][ C0] f2fs_read_end_io+0x168/0x2b0
[ 16.945993][ C0] bio_endio+0x25c/0x2c8
[ 16.946015][ C0] dm_io_dec_pending+0x3e8/0x57c
[ 16.946052][ C0] clone_endio+0x134/0x254
[ 16.946069][ C0] bio_endio+0x25c/0x2c8
[ 16.946084][ C0] blk_update_request+0x1d4/0x478
[ 16.946103][ C0] scsi_end_request+0x38/0x4cc
[ 16.946129][ C0] scsi_io_completion+0x94/0x184
[ 16.946147][ C0] scsi_finish_command+0xe8/0x154
[ 16.946164][ C0] scsi_complete+0x90/0x1d8
[ 16.946181][ C0] blk_done_softirq+0xa4/0x11c
[ 16.946198][ C0] _stext+0x184/0x614
[ 16.946214][ C0] __irq_exit_rcu+0x78/0x144
[ 16.946234][ C0] handle_domain_irq+0xd4/0x154
[ 16.946260][ C0] gic_handle_irq.33881+0x5c/0x27c
[ 16.946281][ C0] call_on_irq_stack+0x40/0x70
[ 16.946298][ C0] do_interrupt_handler+0x48/0xa4
[ 16.946313][ C0] el1_interrupt+0x38/0x68
[ 16.946346][ C0] el1h_64_irq_handler+0x20/0x30
[ 16.946362][ C0] el1h_64_irq+0x78/0x7c
[ 16.946377][ C0] finish_task_switch+0xc8/0x3d8
[ 16.946394][ C0] __schedule+0x600/0xbdc
[ 16.946408][ C0] preempt_schedule_common+0x34/0x5c
[ 16.946423][ C0] preempt_schedule+0x44/0x48
[ 16.946438][ C0] process_one_work+0x30c/0x550
[ 16.946456][ C0] worker_thread+0x414/0x8bc
[ 16.946472][ C0] kthread+0x16c/0x1e0
[ 16.946486][ C0] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: Fix memory leak in acpi_buffer->pointer
There are memory leaks reported by kmemleak:
...
unreferenced object 0xffff00213c141000 (size 1024):
comm "systemd-udevd", pid 2123, jiffies 4294909467 (age 6062.160s)
hex dump (first 32 bytes):
04 00 00 00 02 00 00 00 18 10 14 3c 21 00 ff ff ...........<!...
00 00 00 00 00 00 00 00 03 00 00 00 10 00 00 00 ................
backtrace:
[<000000004b7c9001>] __kmem_cache_alloc_node+0x2f8/0x348
[<00000000b0fc7ceb>] __kmalloc+0x58/0x108
[<0000000064ff4695>] acpi_os_allocate+0x2c/0x68
[<000000007d57d116>] acpi_ut_initialize_buffer+0x54/0xe0
[<0000000024583908>] acpi_evaluate_object+0x388/0x438
[<0000000017b2e72b>] acpi_evaluate_object_typed+0xe8/0x240
[<000000005df0eac2>] coresight_get_platform_data+0x1b4/0x988 [coresight]
...
The ACPI buffer memory (buf.pointer) should be freed. But the buffer
is also used after returning from acpi_get_dsd_graph().
Move the temporary variables buf to acpi_coresight_parse_graph(),
and free it before the function return to prevent memory leak. |
| Dell XtremIO, version(s) 6.4.0-22, contain(s) an Insertion of Sensitive Information into Log File vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information exposure. The attacker may be able to use the exposed credentials to access the vulnerable application with privileges of the compromised account. |
| The SWD debug interface on the Growatt ShineLan-X communication dongle is available by default, allowing an attacker to attain debug access to the device and to extracting secrets or domains from within the device |
| ShineLan-X contains a set of credentials for an FTP server was found within the firmware, allowing testers to establish an insecure FTP connection with the server. This may allow an attacker to replace legitimate files being deployed to devices with their own malicious versions, since the firmware signature verification is not enforced. |
| ShineLan-X contains a stored cross site scripting (XSS) vulnerability in the local configuration web server. The JavaScript code snippet can be inserted in the communication module’s settings center. This may allow attackers to force a legitimate user’s browser’s JavaScript engine to run malicious code. |
| ShineLan-X contains a stored cross site scripting (XSS) vulnerability in the Plant Name field. A HTML payload will be displayed on the plant management page via a direct post. This may allow attackers to force a legitimate user’s browser’s JavaScript engine to run malicious code. |
| Growatt ShineLan-X communication dongle has an undocumented backup account with undocumented credentials which allows significant level access to the device, such as allowing any attacker to access the Setting Center. This means that this is effectively backdoor for all devices utilizing a Growatt ShineLan-X communication dongle. |
| Improper Limitation of a Pathname to a Restricted Directory (Path Traversal) vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Path Traversal.This issue affects DX NetOps Spectrum: 24.3.8 and earlier. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Reflected XSS.This issue affects DX NetOps Spectrum: 24.3.8 and earlier. |
| Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows OS Command Injection.This issue affects DX NetOps Spectrum: 23.3.6 and earlier. |
| Dell ECS versions prior to 3.8.1.5/ ObjectScale version 4.0.0.0, contain a Use of Hard-coded Cryptographic Key vulnerability. An unauthenticated attacker with local access could potentially exploit this vulnerability, leading to Unauthorized access. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by a NULL Pointer Dereference vulnerability that could lead to application denial-of-service. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by a NULL Pointer Dereference vulnerability that could lead to application denial-of-service. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |