Search

Search Results (326173 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53761 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: USB: usbtmc: Fix direction for 0-length ioctl control messages The syzbot fuzzer found a problem in the usbtmc driver: When a user submits an ioctl for a 0-length control transfer, the driver does not check that the direction is set to OUT: ------------[ cut here ]------------ usb 3-1: BOGUS control dir, pipe 80000b80 doesn't match bRequestType fd WARNING: CPU: 0 PID: 5100 at drivers/usb/core/urb.c:411 usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Modules linked in: CPU: 0 PID: 5100 Comm: syz-executor428 Not tainted 6.3.0-syzkaller-12049-g58390c8ce1bd #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023 RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Code: 7c 24 40 e8 1b 13 5c fb 48 8b 7c 24 40 e8 21 1d f0 fe 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 e0 b5 fc 8a e8 19 c8 23 fb <0f> 0b e9 9f ee ff ff e8 ed 12 5c fb 0f b6 1d 12 8a 3c 08 31 ff 41 RSP: 0018:ffffc90003d2fb00 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8880789e9058 RCX: 0000000000000000 RDX: ffff888029593b80 RSI: ffffffff814c1447 RDI: 0000000000000001 RBP: ffff88801ea742f8 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffff88802915e528 R13: 00000000000000fd R14: 0000000080000b80 R15: ffff8880222b3100 FS: 0000555556ca63c0(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9ef4d18150 CR3: 0000000073e5b000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_internal_control_msg drivers/usb/core/message.c:102 [inline] usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153 usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1954 [inline] usbtmc_ioctl+0x1b3d/0x2840 drivers/usb/class/usbtmc.c:2097 To fix this, we must override the direction in the bRequestType field of the control request structure when the length is 0.
CVE-2023-53751 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix potential use-after-free bugs in TCP_Server_Info::hostname TCP_Server_Info::hostname may be updated once or many times during reconnect, so protect its access outside reconnect path as well and then prevent any potential use-after-free bugs.
CVE-2023-53748 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix potential array out-of-bounds in decoder queue_setup variable *nplanes is provided by user via system call argument. The possible value of q_data->fmt->num_planes is 1-3, while the value of *nplanes can be 1-8. The array access by index i can cause array out-of-bounds. Fix this bug by checking *nplanes against the array size.
CVE-2023-53742 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kcsan: Avoid READ_ONCE() in read_instrumented_memory() Haibo Li reported: | Unable to handle kernel paging request at virtual address | ffffff802a0d8d7171 | Mem abort info:o: | ESR = 0x9600002121 | EC = 0x25: DABT (current EL), IL = 32 bitsts | SET = 0, FnV = 0 0 | EA = 0, S1PTW = 0 0 | FSC = 0x21: alignment fault | Data abort info:o: | ISV = 0, ISS = 0x0000002121 | CM = 0, WnR = 0 0 | swapper pgtable: 4k pages, 39-bit VAs, pgdp=000000002835200000 | [ffffff802a0d8d71] pgd=180000005fbf9003, p4d=180000005fbf9003, | pud=180000005fbf9003, pmd=180000005fbe8003, pte=006800002a0d8707 | Internal error: Oops: 96000021 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 45 Comm: kworker/u8:2 Not tainted | 5.15.78-android13-8-g63561175bbda-dirty #1 | ... | pc : kcsan_setup_watchpoint+0x26c/0x6bc | lr : kcsan_setup_watchpoint+0x88/0x6bc | sp : ffffffc00ab4b7f0 | x29: ffffffc00ab4b800 x28: ffffff80294fe588 x27: 0000000000000001 | x26: 0000000000000019 x25: 0000000000000001 x24: ffffff80294fdb80 | x23: 0000000000000000 x22: ffffffc00a70fb68 x21: ffffff802a0d8d71 | x20: 0000000000000002 x19: 0000000000000000 x18: ffffffc00a9bd060 | x17: 0000000000000001 x16: 0000000000000000 x15: ffffffc00a59f000 | x14: 0000000000000001 x13: 0000000000000000 x12: ffffffc00a70faa0 | x11: 00000000aaaaaaab x10: 0000000000000054 x9 : ffffffc00839adf8 | x8 : ffffffc009b4cf00 x7 : 0000000000000000 x6 : 0000000000000007 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffffffc00a70fb70 | x2 : 0005ff802a0d8d71 x1 : 0000000000000000 x0 : 0000000000000000 | Call trace: | kcsan_setup_watchpoint+0x26c/0x6bc | __tsan_read2+0x1f0/0x234 | inflate_fast+0x498/0x750 | zlib_inflate+0x1304/0x2384 | __gunzip+0x3a0/0x45c | gunzip+0x20/0x30 | unpack_to_rootfs+0x2a8/0x3fc | do_populate_rootfs+0xe8/0x11c | async_run_entry_fn+0x58/0x1bc | process_one_work+0x3ec/0x738 | worker_thread+0x4c4/0x838 | kthread+0x20c/0x258 | ret_from_fork+0x10/0x20 | Code: b8bfc2a8 2a0803f7 14000007 d503249f (78bfc2a8) ) | ---[ end trace 613a943cb0a572b6 ]----- The reason for this is that on certain arm64 configuration since e35123d83ee3 ("arm64: lto: Strengthen READ_ONCE() to acquire when CONFIG_LTO=y"), READ_ONCE() may be promoted to a full atomic acquire instruction which cannot be used on unaligned addresses. Fix it by avoiding READ_ONCE() in read_instrumented_memory(), and simply forcing the compiler to do the required access by casting to the appropriate volatile type. In terms of generated code this currently only affects architectures that do not use the default READ_ONCE() implementation. The only downside is that we are not guaranteed atomicity of the access itself, although on most architectures a plain load up to machine word size should still be atomic (a fact the default READ_ONCE() still relies on itself).
CVE-2023-53728 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: posix-timers: Ensure timer ID search-loop limit is valid posix_timer_add() tries to allocate a posix timer ID by starting from the cached ID which was stored by the last successful allocation. This is done in a loop searching the ID space for a free slot one by one. The loop has to terminate when the search wrapped around to the starting point. But that's racy vs. establishing the starting point. That is read out lockless, which leads to the following problem: CPU0 CPU1 posix_timer_add() start = sig->posix_timer_id; lock(hash_lock); ... posix_timer_add() if (++sig->posix_timer_id < 0) start = sig->posix_timer_id; sig->posix_timer_id = 0; So CPU1 can observe a negative start value, i.e. -1, and the loop break never happens because the condition can never be true: if (sig->posix_timer_id == start) break; While this is unlikely to ever turn into an endless loop as the ID space is huge (INT_MAX), the racy read of the start value caught the attention of KCSAN and Dmitry unearthed that incorrectness. Rewrite it so that all id operations are under the hash lock.
CVE-2023-53722 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md: raid1: fix potential OOB in raid1_remove_disk() If rddev->raid_disk is greater than mddev->raid_disks, there will be an out-of-bounds in raid1_remove_disk(). We have already found similar reports as follows: 1) commit d17f744e883b ("md-raid10: fix KASAN warning") 2) commit 1ebc2cec0b7d ("dm raid: fix KASAN warning in raid5_remove_disk") Fix this bug by checking whether the "number" variable is valid.
CVE-2023-53718 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not swap cpu_buffer during resize process When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 00000000 ---truncated---
CVE-2023-53715 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: cfg80211: Pass the PMK in binary instead of hex Apparently the hex passphrase mechanism does not work on newer chips/firmware (e.g. BCM4387). It seems there was a simple way of passing it in binary all along, so use that and avoid the hexification. OpenBSD has been doing it like this from the beginning, so this should work on all chips. Also clear the structure before setting the PMK. This was leaking uninitialized stack contents to the device.
CVE-2023-53714 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/stm: ltdc: fix late dereference check In ltdc_crtc_set_crc_source(), struct drm_crtc was dereferenced in a container_of() before the pointer check. This could cause a kernel panic. Fix this smatch warning: drivers/gpu/drm/stm/ltdc.c:1124 ltdc_crtc_set_crc_source() warn: variable dereferenced before check 'crtc' (see line 1119)
CVE-2023-53712 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9317/1: kexec: Make smp stop calls asynchronous If a panic is triggered by a hrtimer interrupt all online cpus will be notified and set offline. But as highlighted by commit 19dbdcb8039c ("smp: Warn on function calls from softirq context") this call should not be made synchronous with disabled interrupts: softdog: Initiating panic Kernel panic - not syncing: Software Watchdog Timer expired WARNING: CPU: 1 PID: 0 at kernel/smp.c:753 smp_call_function_many_cond unwind_backtrace: show_stack dump_stack_lvl __warn warn_slowpath_fmt smp_call_function_many_cond smp_call_function crash_smp_send_stop.part.0 machine_crash_shutdown __crash_kexec panic softdog_fire __hrtimer_run_queues hrtimer_interrupt Make the smp call for machine_crash_nonpanic_core() asynchronous.
CVE-2023-53708 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: x86: s2idle: Catch multiple ACPI_TYPE_PACKAGE objects If a badly constructed firmware includes multiple `ACPI_TYPE_PACKAGE` objects while evaluating the AMD LPS0 _DSM, there will be a memory leak. Explicitly guard against this.
CVE-2023-53695 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: udf: Detect system inodes linked into directory hierarchy When UDF filesystem is corrupted, hidden system inodes can be linked into directory hierarchy which is an avenue for further serious corruption of the filesystem and kernel confusion as noticed by syzbot fuzzed images. Refuse to access system inodes linked into directory hierarchy and vice versa.
CVE-2023-53684 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Zero padding when dumping algos and encap When copying data to user-space we should ensure that only valid data is copied over. Padding in structures may be filled with random (possibly sensitve) data and should never be given directly to user-space. This patch fixes the copying of xfrm algorithms and the encap template in xfrm_user so that padding is zeroed.
CVE-2023-53682 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (xgene) Fix ioremap and memremap leak Smatch reports: drivers/hwmon/xgene-hwmon.c:757 xgene_hwmon_probe() warn: 'ctx->pcc_comm_addr' from ioremap() not released on line: 757. This is because in drivers/hwmon/xgene-hwmon.c:701 xgene_hwmon_probe(), ioremap and memremap is not released, which may cause a leak. To fix this, ioremap and memremap is modified to devm_ioremap and devm_memremap. [groeck: Fixed formatting and subject]
CVE-2023-53620 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: fix soft lockup in status_resync status_resync() will calculate 'curr_resync - recovery_active' to show user a progress bar like following: [============>........] resync = 61.4% 'curr_resync' and 'recovery_active' is updated in md_do_sync(), and status_resync() can read them concurrently, hence it's possible that 'curr_resync - recovery_active' can overflow to a huge number. In this case status_resync() will be stuck in the loop to print a large amount of '=', which will end up soft lockup. Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case, this way resync in progress will be reported to user.
CVE-2023-53395 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Add AML_NO_OPERAND_RESOLVE flag to Timer ACPICA commit 90310989a0790032f5a0140741ff09b545af4bc5 According to the ACPI specification 19.6.134, no argument is required to be passed for ASL Timer instruction. For taking care of no argument, AML_NO_OPERAND_RESOLVE flag is added to ASL Timer instruction opcode. When ASL timer instruction interpreted by ACPI interpreter, getting error. After adding AML_NO_OPERAND_RESOLVE flag to ASL Timer instruction opcode, issue is not observed. ============================================================= UBSAN: array-index-out-of-bounds in acpica/dswexec.c:401:12 index -1 is out of range for type 'union acpi_operand_object *[9]' CPU: 37 PID: 1678 Comm: cat Not tainted 6.0.0-dev-th500-6.0.y-1+bcf8c46459e407-generic-64k HW name: NVIDIA BIOS v1.1.1-d7acbfc-dirty 12/19/2022 Call trace: dump_backtrace+0xe0/0x130 show_stack+0x20/0x60 dump_stack_lvl+0x68/0x84 dump_stack+0x18/0x34 ubsan_epilogue+0x10/0x50 __ubsan_handle_out_of_bounds+0x80/0x90 acpi_ds_exec_end_op+0x1bc/0x6d8 acpi_ps_parse_loop+0x57c/0x618 acpi_ps_parse_aml+0x1e0/0x4b4 acpi_ps_execute_method+0x24c/0x2b8 acpi_ns_evaluate+0x3a8/0x4bc acpi_evaluate_object+0x15c/0x37c acpi_evaluate_integer+0x54/0x15c show_power+0x8c/0x12c [acpi_power_meter]
CVE-2026-0586 2026-01-05 4.3 Medium
A vulnerability was detected in code-projects Online Product Reservation System 1.0. The affected element is an unknown function of the file handgunner-administrator/prod.php. Performing a manipulation of the argument cat results in cross site scripting. The attack is possible to be carried out remotely. The exploit is now public and may be used.
CVE-2025-31048 2026-01-05 9.9 Critical
Unrestricted Upload of File with Dangerous Type vulnerability in Themify Shopo allows Upload a Web Shell to a Web Server.This issue affects Shopo: from n/a through 1.1.4.
CVE-2025-31047 2026-01-05 8.8 High
Deserialization of Untrusted Data vulnerability in Themify Themify Edmin allows Object Injection.This issue affects Themify Edmin: from n/a through 2.0.0.
CVE-2025-31046 2026-01-05 4.3 Medium
Missing Authorization vulnerability in WPvibes AnyWhere Elementor Pro allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects AnyWhere Elementor Pro: from n/a through 2.29.