| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: fix possible memory leak in snd_ac97_dev_register()
If device_register() fails in snd_ac97_dev_register(), it should
call put_device() to give up reference, or the name allocated in
dev_set_name() is leaked. |
| A vulnerability was found in slackero phpwcms up to 1.9.45/1.10.8. It has been rated as critical. This issue affects the function file_get_contents/is_file of the file include/inc_lib/content/cnt21.readform.inc.php of the component Custom Source Tab. The manipulation of the argument cpage_custom leads to deserialization. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 1.9.46 and 1.10.9 is able to address this issue. It is recommended to upgrade the affected component. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one errors in fast-commit block filling
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aoa: i2sbus: fix possible memory leak in i2sbus_add_dev()
dev_set_name() in soundbus_add_one() allocates memory for name, it need be
freed when of_device_register() fails, call soundbus_dev_put() to give up
the reference that hold in device_initialize(), so that it can be freed in
kobject_cleanup() when the refcount hit to 0. And other resources are also
freed in i2sbus_release_dev(), so it can return 0 directly. |
| In the Linux kernel, the following vulnerability has been resolved:
kernfs: fix use-after-free in __kernfs_remove
Syzkaller managed to trigger concurrent calls to
kernfs_remove_by_name_ns() for the same file resulting in
a KASAN detected use-after-free. The race occurs when the root
node is freed during kernfs_drain().
To prevent this acquire an additional reference for the root
of the tree that is removed before calling __kernfs_remove().
Found by syzkaller with the following reproducer (slab_nomerge is
required):
syz_mount_image$ext4(0x0, &(0x7f0000000100)='./file0\x00', 0x100000, 0x0, 0x0, 0x0, 0x0)
r0 = openat(0xffffffffffffff9c, &(0x7f0000000080)='/proc/self/exe\x00', 0x0, 0x0)
close(r0)
pipe2(&(0x7f0000000140)={0xffffffffffffffff, <r1=>0xffffffffffffffff}, 0x800)
mount$9p_fd(0x0, &(0x7f0000000040)='./file0\x00', &(0x7f00000000c0), 0x408, &(0x7f0000000280)={'trans=fd,', {'rfdno', 0x3d, r0}, 0x2c, {'wfdno', 0x3d, r1}, 0x2c, {[{@cache_loose}, {@mmap}, {@loose}, {@loose}, {@mmap}], [{@mask={'mask', 0x3d, '^MAY_EXEC'}}, {@fsmagic={'fsmagic', 0x3d, 0x10001}}, {@dont_hash}]}})
Sample report:
==================================================================
BUG: KASAN: use-after-free in kernfs_type include/linux/kernfs.h:335 [inline]
BUG: KASAN: use-after-free in kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
BUG: KASAN: use-after-free in __kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
Read of size 2 at addr ffff8880088807f0 by task syz-executor.2/857
CPU: 0 PID: 857 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x6e/0x91 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x5e/0x5e5 mm/kasan/report.c:433
kasan_report+0xa3/0x130 mm/kasan/report.c:495
kernfs_type include/linux/kernfs.h:335 [inline]
kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
__kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
__kernfs_remove fs/kernfs/dir.c:1356 [inline]
kernfs_remove_by_name_ns+0x108/0x190 fs/kernfs/dir.c:1589
sysfs_slab_add+0x133/0x1e0 mm/slub.c:5943
__kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
create_cache mm/slab_common.c:229 [inline]
kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
p9_client_create+0xd4d/0x1190 net/9p/client.c:993
v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
vfs_get_tree+0x85/0x2e0 fs/super.c:1530
do_new_mount fs/namespace.c:3040 [inline]
path_mount+0x675/0x1d00 fs/namespace.c:3370
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline]
__se_sys_mount fs/namespace.c:3568 [inline]
__x64_sys_mount+0x282/0x300 fs/namespace.c:3568
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f725f983aed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f725f0f7028 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 00007f725faa3f80 RCX: 00007f725f983aed
RDX: 00000000200000c0 RSI: 0000000020000040 RDI: 0000000000000000
RBP: 00007f725f9f419c R08: 0000000020000280 R09: 0000000000000000
R10: 0000000000000408 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000006 R14: 00007f725faa3f80 R15: 00007f725f0d7000
</TASK>
Allocated by task 855:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:470
kasan_slab_alloc include/linux/kasan.h:224 [inline]
slab_post_alloc_hook mm/slab.h:7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
efi: ssdt: Don't free memory if ACPI table was loaded successfully
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: fix OOB read/write in network-coding decode
batadv_nc_skb_decode_packet() trusts coded_len and checks only against
skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing
payload headroom, and the source skb length is not verified, allowing an
out-of-bounds read and a small out-of-bounds write.
Validate that coded_len fits within the payload area of both destination
and source sk_buffs before XORing. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix buffer free/clear order in deferred receive path
Fix a use-after-free window by correcting the buffer release sequence in
the deferred receive path. The code freed the RQ buffer first and only
then cleared the context pointer under the lock. Concurrent paths (e.g.,
ABTS and the repost path) also inspect and release the same pointer under
the lock, so the old order could lead to double-free/UAF.
Note that the repost path already uses the correct pattern: detach the
pointer under the lock, then free it after dropping the lock. The
deferred path should do the same. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to version 3.21.0, `xf_Pointer_New` frees `cursorPixels` on failure, then `pointer_free` calls `xf_Pointer_Free` and frees it again, triggering ASan UAF. A malicious server can trigger a client‑side use after free, causing a crash (DoS) and potential heap corruption with code‑execution risk depending on allocator behavior and surrounding heap layout. Version 3.21.0 contains a patch for the issue. |
| Inappropriate implementation in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) |
| Svelte devalue is a JavaScript library that serializes values into strings when JSON.stringify isn't sufficient for the job. From 5.1.0 to 5.6.1, certain inputs can cause devalue.parse to consume excessive CPU time and/or memory, potentially leading to denial of service in systems that parse input from untrusted sources. This affects applications using devalue.parse on externally-supplied data. The root cause is the ArrayBuffer hydration expecting base64 encoded strings as input, but not checking the assumption before decoding the input. This vulnerability is fixed in 5.6.2. |
| In SchedMD Slurm before 24.11.5, 24.05.8, and 23.11.11, the accounting system can allow a Coordinator to promote a user to Administrator. |
| Inappropriate implementation in Downloads in Google Chrome on Windows prior to 144.0.7559.59 allowed a remote attacker to bypass dangerous file type protections via a malicious file. (Chromium security severity: Medium) |
| Svelte devalue is a JavaScript library that serializes values into strings when JSON.stringify isn't sufficient for the job. From 5.3.0 to 5.6.1, certain inputs can cause devalue.parse to consume excessive CPU time and/or memory, potentially leading to denial of service in systems that parse input from untrusted sources. This affects applications using devalue.parse on externally-supplied data. The root cause is the typed array hydration expecting an ArrayBuffer as input, but not checking the assumption before creating the typed array. This vulnerability is fixed in 5.6.2. |
| The WorklogPRO - Jira Timesheets plugin in the Jira Data Center before 4.24.1-jira9, 4.24.1-jira10, and 4.24.1-jira11 allows attackers to inject arbitrary HTML or JavaScript via XSS. This is exploited via a crafted payload placed in the name of a filter. This code is executed in the browser when the user attempts to create a timesheet with the filter timesheet type on the custom timesheet dialog because the filter name is not properly sanitized during the action. |
| A vulnerability was determined in Yonyou KSOA 9.0. The impacted element is an unknown function of the file /kmf/folder.jsp of the component HTTP GET Parameter Handler. Executing a manipulation of the argument folderid can lead to sql injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way. |
| Incorrect security UI in Digital Credentials in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to perform domain spoofing via a crafted HTML page. (Chromium security severity: Medium) |
| Paessler PRTG Network Monitor before 25.4.114 allows Denial-of-Service (DoS) by an authenticated attacker via the Notification Contacts functionality. |
| Paessler PRTG Network Monitor before 25.4.114 allows XSS by an unauthenticated attacker via the filter parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: prevent release journal inode after journal shutdown
Before calling ocfs2_delete_osb(), ocfs2_journal_shutdown() has already
been executed in ocfs2_dismount_volume(), so osb->journal must be NULL.
Therefore, the following calltrace will inevitably fail when it reaches
jbd2_journal_release_jbd_inode().
ocfs2_dismount_volume()->
ocfs2_delete_osb()->
ocfs2_free_slot_info()->
__ocfs2_free_slot_info()->
evict()->
ocfs2_evict_inode()->
ocfs2_clear_inode()->
jbd2_journal_release_jbd_inode(osb->journal->j_journal,
Adding osb->journal checks will prevent null-ptr-deref during the above
execution path. |