| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An improper input validation and protocol compliance vulnerability in free5GC v4.0.1 allows remote attackers to cause a denial of service. The UPF incorrectly accepts a malformed PFCP Association Setup Request, violating 3GPP TS 29.244. This places the UPF in an inconsistent state where a subsequent valid PFCP Session Establishment Request triggers a cascading failure, disrupting the SMF connection and causing service degradation. |
| A heap buffer overflow vulnerability in the UPF component of free5GC v4.0.1 allows remote attackers to cause a denial of service via a crafted PFCP Session Modification Request. The issue occurs in the SDFFilterFields.UnmarshalBinary function (sdf-filter.go) when processing a declared length that exceeds the actual buffer capacity, leading to a runtime panic and UPF crash. |
| fleetdm/fleet is open source device management software. Prior to versions 4.78.2, 4.77.1, 4.76.2, 4.75.2, and 4.53.3, if Windows MDM is enabled, an unauthenticated attacker can exploit this XSS vulnerability to steal a Fleet administrator's authentication token (FLEET::auth_token) from localStorage. This could allow unauthorized access to Fleet, including administrative access, visibility into device data, and modification of configuration. Versions 4.78.2, 4.77.1, 4.76.2, 4.75.2, and 4.53.3 fix the issue. If an immediate upgrade is not possible, affected Fleet users should temporarily disable Windows MDM. |
| A vulnerability, which was classified as critical, has been found in itsourcecode Simple Online Hotel Reservation System 1.0. Affected by this issue is some unknown functionality of the file edit_room.php. The manipulation of the argument photo leads to unrestricted upload. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-268868. |
| A vulnerability classified as critical was found in itsourcecode Simple Online Hotel Reservation System 1.0. Affected by this vulnerability is an unknown functionality of the file add_room.php. The manipulation of the argument photo leads to unrestricted upload. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-268867. |
| A vulnerability was found in itsourcecode Simple Online Hotel Reservation System 1.0. It has been declared as critical. This vulnerability affects unknown code of the file index.php. The manipulation of the argument username leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-269620. |
| External Secrets Operator reads information from a third-party service and automatically injects the values as Kubernetes Secrets. Starting in version 0.20.2 and prior to version 1.2.0, the `getSecretKey` template function, while introduced for senhasegura Devops Secrets Management (DSM) provider, has the ability to fetch secrets cross-namespaces with the roleBinding of the external-secrets controller, bypassing our security mechanisms. This function was completely removed in version 1.2.0, as everything done with that templating function can be done in a different way while respecting External Secrets Operator's safeguards As a workaround, use a policy engine such as Kubernetes, Kyverno, Kubewarden, or OPA to prevent the usage of `getSecretKey` in any ExternalSecret resource. |
| A flaw has been found in ChaiScript up to 6.1.0. This affects the function chaiscript::Type_Info::bare_equal of the file include/chaiscript/dispatchkit/type_info.hpp. This manipulation causes use after free. The attack requires local access. The attack's complexity is rated as high. The exploitability is reported as difficult. The exploit has been published and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A vulnerability was detected in ChaiScript up to 6.1.0. The impacted element is the function chaiscript::str_less::operator of the file include/chaiscript/chaiscript_defines.hpp. The manipulation results in use after free. The attack requires a local approach. The attack requires a high level of complexity. The exploitability is regarded as difficult. The exploit is now public and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| An unauthenticated stack-based buffer overflow vulnerability exists in the HTTP API endpoint /cgi-bin/api.values.get. A remote attacker can leverage this vulnerability to achieve unauthenticated remote code execution (RCE) with root privileges on a target device. The vulnerability affects all six device models in the series: GXP1610, GXP1615, GXP1620, GXP1625, GXP1628, and GXP1630. |
| Jenkins 2.550 and earlier, LTS 2.541.1 and earlier accepts Run Parameter values that refer to builds the user submitting the build does not have access to, allowing attackers with Item/Build and Item/Configure permission to obtain information about the existence of jobs, the existence of builds, and if a specified build exists, its display name. |
| Jenkins 2.483 through 2.550 (both inclusive), LTS 2.492.1 through 2.541.1 (both inclusive) does not escape the user-provided description of the "Mark temporarily offline" offline cause, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers with Agent/Configure or Agent/Disconnect permission. |
| Vulnerabilities in the API error handling of an HPE Aruba Networking 5G Core server API could allow an unauthenticated remote attacker to obtain sensitive information. Successful exploitation could allow an attacker to access details such as user accounts, roles, and system configuration, as well as to gain insight into internal services and workflows, increasing the risk of unauthorized access and elevated privileges when combined with other vulnerabilities. |
| A vulnerability in the management API of the affected product could allow an unauthenticated remote attacker to trigger service restarts. Successful exploitation could allow an attacker to disrupt services and negatively impact system availability. |
| An authentication bypass in the application API allows an unauthorized administrative account to be created. A remote attacker could exploit this vulnerability to create privileged user accounts. Successful exploitation could allow an attacker to gain administrative access, modify system configurations, and access or manipulate sensitive data. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: Add alloc_tagging_slab_free_hook for memcg_alloc_abort_single
When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning
may be noticed:
[ 3959.023862] ------------[ cut here ]------------
[ 3959.023891] alloc_tag was not cleared (got tag for lib/xarray.c:378)
[ 3959.023947] WARNING: ./include/linux/alloc_tag.h:155 at alloc_tag_add+0x128/0x178, CPU#6: mkfs.ntfs/113998
[ 3959.023978] Modules linked in: dns_resolver tun brd overlay exfat btrfs blake2b libblake2b xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel ext4 crc16 mbcache jbd2 rfkill sunrpc vfat fat sg fuse nfnetlink sr_mod virtio_gpu cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper ghash_ce drm sm4 backlight virtio_net net_failover virtio_scsi failover virtio_console virtio_blk virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod i2c_dev aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[ 3959.024170] CPU: 6 UID: 0 PID: 113998 Comm: mkfs.ntfs Kdump: loaded Tainted: G W 6.19.0-rc7+ #7 PREEMPT(voluntary)
[ 3959.024182] Tainted: [W]=WARN
[ 3959.024186] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3959.024192] pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3959.024199] pc : alloc_tag_add+0x128/0x178
[ 3959.024207] lr : alloc_tag_add+0x128/0x178
[ 3959.024214] sp : ffff80008b696d60
[ 3959.024219] x29: ffff80008b696d60 x28: 0000000000000000 x27: 0000000000000240
[ 3959.024232] x26: 0000000000000000 x25: 0000000000000240 x24: ffff800085d17860
[ 3959.024245] x23: 0000000000402800 x22: ffff0000c0012dc0 x21: 00000000000002d0
[ 3959.024257] x20: ffff0000e6ef3318 x19: ffff800085ae0410 x18: 0000000000000000
[ 3959.024269] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 3959.024281] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600064101293
[ 3959.024292] x11: 1fffe00064101292 x10: ffff600064101292 x9 : dfff800000000000
[ 3959.024305] x8 : 00009fff9befed6e x7 : ffff000320809493 x6 : 0000000000000001
[ 3959.024316] x5 : ffff000320809490 x4 : ffff600064101293 x3 : ffff800080691838
[ 3959.024328] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000d5bcd640
[ 3959.024340] Call trace:
[ 3959.024346] alloc_tag_add+0x128/0x178 (P)
[ 3959.024355] __alloc_tagging_slab_alloc_hook+0x11c/0x1a8
[ 3959.024362] kmem_cache_alloc_lru_noprof+0x1b8/0x5e8
[ 3959.024369] xas_alloc+0x304/0x4f0
[ 3959.024381] xas_create+0x1e0/0x4a0
[ 3959.024388] xas_store+0x68/0xda8
[ 3959.024395] __filemap_add_folio+0x5b0/0xbd8
[ 3959.024409] filemap_add_folio+0x16c/0x7e0
[ 3959.024416] __filemap_get_folio_mpol+0x2dc/0x9e8
[ 3959.024424] iomap_get_folio+0xfc/0x180
[ 3959.024435] __iomap_get_folio+0x2f8/0x4b8
[ 3959.024441] iomap_write_begin+0x198/0xc18
[ 3959.024448] iomap_write_iter+0x2ec/0x8f8
[ 3959.024454] iomap_file_buffered_write+0x19c/0x290
[ 3959.024461] blkdev_write_iter+0x38c/0x978
[ 3959.024470] vfs_write+0x4d4/0x928
[ 3959.024482] ksys_write+0xfc/0x1f8
[ 3959.024489] __arm64_sys_write+0x74/0xb0
[ 3959.024496] invoke_syscall+0xd4/0x258
[ 3959.024507] el0_svc_common.constprop.0+0xb4/0x240
[ 3959.024514] do_el0_svc+0x48/0x68
[ 3959.024520] el0_svc+0x40/0xf8
[ 3959.024526] el0t_64_sync_handler+0xa0/0xe8
[ 3959.024533] el0t_64_sync+0x1ac/0x1b0
[ 3959.024540] ---[ end trace 0000000000000000 ]---
When __memcg_slab_post_alloc_hook() fails, there are two different
free paths depending on whether size == 1 or size != 1. In the
kmem_cache_free_bulk() path, we do call alloc_tagging_slab_free_hook().
However, in memcg_alloc_abort_single() we don't, the above warning will be
triggered on the next allocation.
Therefore, add alloc_tagging_slab_free_hook() to the
memcg_alloc_abort_single() path. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc()
Fix incorrect NULL check in loongson_gpio_init_irqchip().
The function checks chip->parent instead of chip->irq.parents. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: trace: fix snapshot deadlock with sbi ecall
If sbi_ecall.c's functions are traceable,
echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter
may get the kernel into a deadlock.
(Functions in sbi_ecall.c are excluded from tracing if
CONFIG_RISCV_ALTERNATIVE_EARLY is set.)
__sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code
raises an IPI interrupt, which results in another call to __sbi_ecall
and another snapshot...
All it takes to get into this endless loop is one initial __sbi_ecall.
On RISC-V systems without SSTC extension, the clock events in
timer-riscv.c issue periodic sbi ecalls, making the problem easy to
trigger.
Always exclude the sbi_ecall.c functions from tracing to fix the
potential deadlock.
sbi ecalls can easiliy be logged via trace events, excluding ecall
functions from function tracing is not a big limitation. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count()
In iscsit_dec_conn_usage_count(), the function calls complete() while
holding the conn->conn_usage_lock. As soon as complete() is invoked, the
waiter (such as iscsit_close_connection()) may wake up and proceed to free
the iscsit_conn structure.
If the waiter frees the memory before the current thread reaches
spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function
attempts to release a lock within the already-freed connection structure.
Fix this by releasing the spinlock before calling complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmware: Fix hypercall clobbers
Fedora QA reported the following panic:
BUG: unable to handle page fault for address: 0000000040003e54
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025
RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90
..
Call Trace:
vmmouse_report_events+0x13e/0x1b0
psmouse_handle_byte+0x15/0x60
ps2_interrupt+0x8a/0xd0
...
because the QEMU VMware mouse emulation is buggy, and clears the top 32
bits of %rdi that the kernel kept a pointer in.
The QEMU vmmouse driver saves and restores the register state in a
"uint32_t data[6];" and as a result restores the state with the high
bits all cleared.
RDI originally contained the value of a valid kernel stack address
(0xff5eeb3240003e54). After the vmware hypercall it now contains
0x40003e54, and we get a page fault as a result when it is dereferenced.
The proper fix would be in QEMU, but this works around the issue in the
kernel to keep old setups working, when old kernels had not happened to
keep any state in %rdi over the hypercall.
In theory this same issue exists for all the hypercalls in the vmmouse
driver; in practice it has only been seen with vmware_hypercall3() and
vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those
two calls. This should have a minimal effect on code generation overall
as it should be rare for the compiler to want to make RDI/RSI live
across hypercalls. |