| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Hugging Face Transformers Perceiver Model Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of model files. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-25423. |
| Hugging Face Transformers SEW convert_config Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must convert a malicious checkpoint.
The specific flaw exists within the convert_config function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28251. |
| Hugging Face Transformers SEW-D convert_config Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must convert a malicious checkpoint.
The specific flaw exists within the convert_config function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the current user.
. Was ZDI-CAN-28252. |
| Hugging Face Transformers Transformer-XL Model Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of model files. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-25424. |
| Hugging Face Transformers X-CLIP Checkpoint Conversion Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28308. |
| Hugging Face Diffusers CogView4 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Diffusers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27424. |
| Hugging Face Accelerate Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Accelerate. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27985. |
| Hugging Face Transformers GLM4 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of weights. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28309. |
| Hugging Face Transformers HuBERT convert_config Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must convert a malicious checkpoint.
The specific flaw exists within the convert_config function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28253. |
| Hugging Face smolagents Remote Python Executor Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face smolagents. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the parsing of pickle data. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28312. |
| Hugging Face Transformers megatron_gpt2 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Transformers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27984. |
| Hugging Face Smolagents version 1.20.0 contains an XPath injection vulnerability in the search_item_ctrl_f function located in src/smolagents/vision_web_browser.py. The function constructs an XPath query by directly concatenating user-supplied input into the XPath expression without proper sanitization or escaping. This allows an attacker to inject malicious XPath syntax that can alter the intended query logic. The vulnerability enables attackers to bypass search filters, access unintended DOM elements, and disrupt web automation workflows. This can lead to information disclosure, manipulation of AI agent interactions, and compromise the reliability of automated web tasks. The issue is fixed in version 1.22.0. |
| A Regular Expression Denial of Service (ReDoS) vulnerability exists in the Hugging Face Transformers library, specifically in the `convert_tf_weight_name_to_pt_weight_name()` function. This function, responsible for converting TensorFlow weight names to PyTorch format, uses a regex pattern `/[^/]*___([^/]*)/` that can be exploited to cause excessive CPU consumption through crafted input strings due to catastrophic backtracking. The vulnerability affects versions up to 4.51.3 and is fixed in version 4.53.0. This issue can lead to service disruption, resource exhaustion, and potential API service vulnerabilities, impacting model conversion processes between TensorFlow and PyTorch formats. |
| A Regular Expression Denial of Service (ReDoS) vulnerability was discovered in the Hugging Face Transformers library, specifically within the `normalize_numbers()` method of the `EnglishNormalizer` class. This vulnerability affects versions up to 4.52.4 and is fixed in version 4.53.0. The issue arises from the method's handling of numeric strings, which can be exploited using crafted input strings containing long sequences of digits, leading to excessive CPU consumption. This vulnerability impacts text-to-speech and number normalization tasks, potentially causing service disruption, resource exhaustion, and API vulnerabilities. |
| A Regular Expression Denial of Service (ReDoS) vulnerability was discovered in the Hugging Face Transformers library, specifically affecting the MarianTokenizer's `remove_language_code()` method. This vulnerability is present in version 4.52.4 and has been fixed in version 4.53.0. The issue arises from inefficient regex processing, which can be exploited by crafted input strings containing malformed language code patterns, leading to excessive CPU consumption and potential denial of service. |
| The huggingface/transformers library, versions prior to 4.53.0, is vulnerable to Regular Expression Denial of Service (ReDoS) in the AdamWeightDecay optimizer. The vulnerability arises from the _do_use_weight_decay method, which processes user-controlled regular expressions in the include_in_weight_decay and exclude_from_weight_decay lists. Malicious regular expressions can cause catastrophic backtracking during the re.search call, leading to 100% CPU utilization and a denial of service. This issue can be exploited by attackers who can control the patterns in these lists, potentially causing the machine learning task to hang and rendering services unresponsive. |
| The huggingface/transformers library is vulnerable to arbitrary code execution through deserialization of untrusted data within the `load_repo_checkpoint()` function of the `TFPreTrainedModel()` class. Attackers can execute arbitrary code and commands by crafting a malicious serialized payload, exploiting the use of `pickle.load()` on data from potentially untrusted sources. This vulnerability allows for remote code execution (RCE) by deceiving victims into loading a seemingly harmless checkpoint during a normal training process, thereby enabling attackers to execute arbitrary code on the targeted machine. |
| A vulnerability was identified in huggingface LeRobot up to 0.3.3. Affected by this vulnerability is an unknown functionality of the file lerobot/common/robot_devices/robots/lekiwi_remote.py of the component ZeroMQ Socket Handler. The manipulation leads to missing authentication. The attack can only be initiated within the local network. The vendor was contacted early about this disclosure but did not respond in any way. |
| Incomplete validation of dunder attributes allows an attacker to escape from the Local Python execution environment sandbox, enforced by smolagents. The attack requires a Prompt Injection in order to trick the agent to create malicious code. |
| A Regular Expression Denial of Service (ReDoS) vulnerability was discovered in the Hugging Face Transformers library, specifically in the `get_configuration_file()` function within the `transformers.configuration_utils` module. The affected version is 4.49.0, and the issue is resolved in version 4.51.0. The vulnerability arises from the use of a regular expression pattern `config\.(.*)\.json` that can be exploited to cause excessive CPU consumption through crafted input strings, leading to catastrophic backtracking. This can result in model serving disruption, resource exhaustion, and increased latency in applications using the library. |