Search Results (323413 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-14701 1 Arcadia Technology 1 Crafty Controller 2025-12-18 7.1 High
An input neutralization vulnerability in the Server MOTD component of Crafty Controller allows a remote, unauthenticated attacker to perform stored XSS via server MOTD modification.
CVE-2025-13532 1 Fortra 1 Boks 2025-12-18 6.2 Medium
Insecure defaults in the Server Agent component of Fortra's Core Privileged Access Manager (BoKS) can result in the selection of weak password hash algorithms.  This issue affects BoKS Server Agent 9.0 instances that support yescrypt and are running in a BoKS 8.1 domain.
CVE-2025-33225 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 8.4 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering.
CVE-2025-12496 2 Dylanjkotze, Wordpress 2 Zephyr Project Manager, Wordpress 2025-12-18 4.9 Medium
The Zephyr Project Manager plugin for WordPress is vulnerable to Directory Traversal in all versions up to, and including, 3.3.203 via the `file` parameter. This makes it possible for authenticated attackers, with Custom-level access and above, to read the contents of arbitrary files on the server, which can contain sensitive information. On a servers that have `allow_url_fopen` enabled, this issue allows for Server-Side Request Forgery
CVE-2025-14095 2 Microsoft, Radiometer 7 Windows, Abl800 Basic Analyzer, Abl800 Flex Analyzer and 4 more 2025-12-18 5.7 Medium
A "Privilege boundary violation" vulnerability is identified affecting multiple Radiometer Products. Exploitation of this vulnerability gives a user with physical access to the analyzer, the possibility to gain unauthorized access to functionalities outside the restricted environment. The vulnerability is due to weakness in the design of access control implementation in application software.  Other related CVE's are CVE-2025-14096 & CVE-2025-14097. Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency. Required configuration for Exposure: Physical access to the analyzer is needed. Temporary work Around: Only authorized people can physically access the analyzer. Permanent solution: Local Radiometer representatives will contact all affected customers to discuss a permanent solution. Exploit Status: Researchers have provided working proof-of-concept. Radiometer is not aware of any publicly available exploit at the time of publication.                                                                                                                                                                                        Note: CVSS score 6.8 when underlying OS is Windows 7 or Windows XP Operating systems and CVSS score 5.7 when underlying OS is Windows 8 or Windows 10 operating systems.
CVE-2025-53619 1 Grassroots Dicom Project 1 Grassroots Dicom 2025-12-18 7.4 High
An out-of-bounds read vulnerability exists in the JPEGBITSCodec::InternalCode functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability.The function `null_convert` is called based of the value of the malicious DICOM file specifying the intended interpretation of the image pixel data
CVE-2025-64520 1 Glpi-project 1 Glpi 2025-12-18 6.5 Medium
GLPI is a free asset and IT management software package. Starting in version 9.1.0 and prior to version 10.0.21, an unauthorized user with an API access can read all knowledge base entries. Users should upgrade to 10.0.21 to receive a patch.
CVE-2025-68212 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: Fix uninitialized 'offp' in statmount_string() In statmount_string(), most flags assign an output offset pointer (offp) which is later updated with the string offset. However, the STATMOUNT_MNT_UIDMAP and STATMOUNT_MNT_GIDMAP cases directly set the struct fields instead of using offp. This leaves offp uninitialized, leading to a possible uninitialized dereference when *offp is updated. Fix it by assigning offp for UIDMAP and GIDMAP as well, keeping the code path consistent.
CVE-2025-68214 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: timers: Fix NULL function pointer race in timer_shutdown_sync() There is a race condition between timer_shutdown_sync() and timer expiration that can lead to hitting a WARN_ON in expire_timers(). The issue occurs when timer_shutdown_sync() clears the timer function to NULL while the timer is still running on another CPU. The race scenario looks like this: CPU0 CPU1 <SOFTIRQ> lock_timer_base() expire_timers() base->running_timer = timer; unlock_timer_base() [call_timer_fn enter] mod_timer() ... timer_shutdown_sync() lock_timer_base() // For now, will not detach the timer but only clear its function to NULL if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() [call_timer_fn exit] lock_timer_base() base->running_timer = NULL; unlock_timer_base() ... // Now timer is pending while its function set to NULL. // next timer trigger <SOFTIRQ> expire_timers() WARN_ON_ONCE(!fn) // hit ... lock_timer_base() // Now timer will detach if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() The problem is that timer_shutdown_sync() clears the timer function regardless of whether the timer is currently running. This can leave a pending timer with a NULL function pointer, which triggers the WARN_ON_ONCE(!fn) check in expire_timers(). Fix this by only clearing the timer function when actually detaching the timer. If the timer is running, leave the function pointer intact, which is safe because the timer will be properly detached when it finishes running.
CVE-2025-68225 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: lib/test_kho: check if KHO is enabled We must check whether KHO is enabled prior to issuing KHO commands, otherwise KHO internal data structures are not initialized.
CVE-2025-68226 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix incomplete backport in cfids_invalidation_worker() The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in smb2_close_cached_fid()") was an incomplete backport and missed one kref_put() call in cfids_invalidation_worker() that should have been converted to close_cached_dir().
CVE-2025-68232 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: veth: more robust handing of race to avoid txq getting stuck Commit dc82a33297fc ("veth: apply qdisc backpressure on full ptr_ring to reduce TX drops") introduced a race condition that can lead to a permanently stalled TXQ. This was observed in production on ARM64 systems (Ampere Altra Max). The race occurs in veth_xmit(). The producer observes a full ptr_ring and stops the queue (netif_tx_stop_queue()). The subsequent conditional logic, intended to re-wake the queue if the consumer had just emptied it (if (__ptr_ring_empty(...)) netif_tx_wake_queue()), can fail. This leads to a "lost wakeup" where the TXQ remains stopped (QUEUE_STATE_DRV_XOFF) and traffic halts. This failure is caused by an incorrect use of the __ptr_ring_empty() API from the producer side. As noted in kernel comments, this check is not guaranteed to be correct if a consumer is operating on another CPU. The empty test is based on ptr_ring->consumer_head, making it reliable only for the consumer. Using this check from the producer side is fundamentally racy. This patch fixes the race by adopting the more robust logic from an earlier version V4 of the patchset, which always flushed the peer: (1) In veth_xmit(), the racy conditional wake-up logic and its memory barrier are removed. Instead, after stopping the queue, we unconditionally call __veth_xdp_flush(rq). This guarantees that the NAPI consumer is scheduled, making it solely responsible for re-waking the TXQ. This handles the race where veth_poll() consumes all packets and completes NAPI *before* veth_xmit() on the producer side has called netif_tx_stop_queue. The __veth_xdp_flush(rq) will observe rx_notify_masked is false and schedule NAPI. (2) On the consumer side, the logic for waking the peer TXQ is moved out of veth_xdp_rcv() and placed at the end of the veth_poll() function. This placement is part of fixing the race, as the netif_tx_queue_stopped() check must occur after rx_notify_masked is potentially set to false during NAPI completion. This handles the race where veth_poll() consumes all packets, but haven't finished (rx_notify_masked is still true). The producer veth_xmit() stops the TXQ and __veth_xdp_flush(rq) will observe rx_notify_masked is true, meaning not starting NAPI. Then veth_poll() change rx_notify_masked to false and stops NAPI. Before exiting veth_poll() will observe TXQ is stopped and wake it up.
CVE-2025-68234 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: io_uring/cmd_net: fix wrong argument types for skb_queue_splice() If timestamp retriving needs to be retried and the local list of SKB's already has entries, then it's spliced back into the socket queue. However, the arguments for the splice helper are transposed, causing exactly the wrong direction of splicing into the on-stack list. Fix that up.
CVE-2025-68245 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netpoll: fix incorrect refcount handling causing incorrect cleanup commit efa95b01da18 ("netpoll: fix use after free") incorrectly ignored the refcount and prematurely set dev->npinfo to NULL during netpoll cleanup, leading to improper behavior and memory leaks. Scenario causing lack of proper cleanup: 1) A netpoll is associated with a NIC (e.g., eth0) and netdev->npinfo is allocated, and refcnt = 1 - Keep in mind that npinfo is shared among all netpoll instances. In this case, there is just one. 2) Another netpoll is also associated with the same NIC and npinfo->refcnt += 1. - Now dev->npinfo->refcnt = 2; - There is just one npinfo associated to the netdev. 3) When the first netpolls goes to clean up: - The first cleanup succeeds and clears np->dev->npinfo, ignoring refcnt. - It basically calls `RCU_INIT_POINTER(np->dev->npinfo, NULL);` - Set dev->npinfo = NULL, without proper cleanup - No ->ndo_netpoll_cleanup() is either called 4) Now the second target tries to clean up - The second cleanup fails because np->dev->npinfo is already NULL. * In this case, ops->ndo_netpoll_cleanup() was never called, and the skb pool is not cleaned as well (for the second netpoll instance) - This leaks npinfo and skbpool skbs, which is clearly reported by kmemleak. Revert commit efa95b01da18 ("netpoll: fix use after free") and adds clarifying comments emphasizing that npinfo cleanup should only happen once the refcount reaches zero, ensuring stable and correct netpoll behavior.
CVE-2025-68249 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: most: usb: hdm_probe: Fix calling put_device() before device initialization The early error path in hdm_probe() can jump to err_free_mdev before &mdev->dev has been initialized with device_initialize(). Calling put_device(&mdev->dev) there triggers a device core WARN and ends up invoking kref_put(&kobj->kref, kobject_release) on an uninitialized kobject. In this path the private struct was only kmalloc'ed and the intended release is effectively kfree(mdev) anyway, so free it directly instead of calling put_device() on an uninitialized device. This removes the WARNING and fixes the pre-initialization error path.
CVE-2025-68251 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: avoid infinite loops due to corrupted subpage compact indexes Robert reported an infinite loop observed by two crafted images. The root cause is that `clusterofs` can be larger than `lclustersize` for !NONHEAD `lclusters` in corrupted subpage compact indexes, e.g.: blocksize = lclustersize = 512 lcn = 6 clusterofs = 515 Move the corresponding check for full compress indexes to `z_erofs_load_lcluster_from_disk()` to also cover subpage compact compress indexes. It also fixes the position of `m->type >= Z_EROFS_LCLUSTER_TYPE_MAX` check, since it should be placed right after `z_erofs_load_{compact,full}_lcluster()`.
CVE-2025-68253 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: don't spin in add_stack_record when gfp flags don't allow syzbot was able to find the following path: add_stack_record_to_list mm/page_owner.c:182 [inline] inc_stack_record_count mm/page_owner.c:214 [inline] __set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851 prep_new_page mm/page_alloc.c:1859 [inline] get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858 alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554 Don't spin in add_stack_record_to_list() when it is called from *_nolock() context.
CVE-2025-68254 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing The Extended Supported Rates (ESR) IE handling in OnBeacon accessed *(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these offsets lie within the received frame buffer. A malformed beacon with an ESR IE positioned at the end of the buffer could cause an out-of-bounds read, potentially triggering a kernel panic. Add a boundary check to ensure that the ESR IE body and the subsequent bytes are within the limits of the frame before attempting to access them. This prevents OOB reads caused by malformed beacon frames.
CVE-2025-68256 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser The Information Element (IE) parser rtw_get_ie() trusted the length byte of each IE without validating that the IE body (len bytes after the 2-byte header) fits inside the remaining frame buffer. A malformed frame can advertise an IE length larger than the available data, causing the parser to increment its pointer beyond the buffer end. This results in out-of-bounds reads or, depending on the pattern, an infinite loop. Fix by validating that (offset + 2 + len) does not exceed the limit before accepting the IE or advancing to the next element. This prevents OOB reads and ensures the parser terminates safely on malformed frames.
CVE-2025-68283 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: replace BUG_ON with bounds check for map->max_osd OSD indexes come from untrusted network packets. Boundary checks are added to validate these against map->max_osd. [ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic edits ]